Magnesium gluconate is a classical organometallic pharmaceutical compound used for the prevention and treatment of hypomagnesemia as a source of magnesium ion. The present research described the in-depth study on solid state properties physicochemical and thermal properties of magnesium gluconate using sophisticated analytical techniques like PXRD, PSA, FT-IR, UV-Vis spectroscopy, TGA/DTG, and DSC. Magnesium gluconate was found to be crystalline in nature along with the crystallite size ranging from 14.10 to 47.35 nm. The particle size distribution was at d(0.1)=6.552 µm, d(0.5)=38.299 µm, d(0.9)=173.712 µm and D(4,3)=67.122 µm along with the specific surface area of 0.372 m/g. The wavelength for the maximum absorbance was at 198.0 nm. Magnesium gluconate exhibited 88.51% weight loss with three stages of thermal degradation process up to 895.18 °C from room temperature. The TGA/DTG thermograms of the analyte indicated that magnesium gluconate was thermally stable up to around 165 °C. Consequently, the melting temperature of magnesium gluconate was found to be 169.90 °C along with the enthalpy of fusion of 308.7 J/g. Thus, the authors conclude that the achieved results from this study are very useful in pharmaceutical and nutraceutical industries for the identification, characterization and qualitative analysis of magnesium gluconate for preformulation studies and also for developing magnesium gluconate based novel formulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790707 | PMC |
http://dx.doi.org/10.1016/j.jpha.2017.03.006 | DOI Listing |
J Food Drug Anal
December 2024
Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.
Limosilactobacillus reuteri is a probiotic bacterium known for its numerous beneficial effects on human health and is commonly utilized in various dietary supplements. Previously, we encountered difficulties in isolating L. reuteri from retail dietary supplements containing complex probiotic compositions by using non-selective media such as de Man, Rogosa, and Sharpe (MRS) agar.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan, R.O.C.
This study reveals the anti-tyrosinase activity of Ganoderma formosanum extracts, pinpointing compounds including gluconic acid, mesalamine, L-pyroglutamic acid, esculetin, 5-hydroxyindole, and salicylic acid, as effective melanin production inhibitors in melanoma cells and zebrafish embryos. Furthermore, multiple molecular docking simulations provided insights into interactions between the identified compounds and tyrosinase, increasing binding affinity up to -16.36 kcal/mol.
View Article and Find Full Text PDFArch Microbiol
January 2025
Tecnológico Nacional de México, Instituto Tecnológico de Morelia, 58120, Morelia, Mexico.
The metabolites gluconic acid, 5-ketogluconic acid, proline, and glutamic acid, produced by Pseudomonas reptilivora B-6bs, are industrially important, particularly in food and pharmaceutical sectors. However, producing these metabolites involves biotin supplementation to enhance yields, which is an expensive additive, and reducing its use can significantly lower production costs. Thus, This study aimed to enhance the production of gluconic acid, 5-ketogluconic acid, proline, and glutamic acid without biotin supplementation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Front Nutr
December 2024
College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, China.
Background: The use of enzymes within pig feed can reduce the challenges associated with antibiotic-free animal feeding. However, this enzymatic effect is often limited by the internal and external gut environment. This study aimed to improve diet quality and assess the impact of an enzymatically hydrolyzed diet (EHD) on growth performance, meat quality, and intestinal health in growing pigs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!