AI Article Synopsis

  • Cardiac toxicity from doxorubicin (DOX) is a major concern in cancer treatment, but thrombopoietin (TPO) has shown potential protective effects against DOX-induced damage to heart cells.
  • Research demonstrated that TPO improves cell viability and inhibits autophagy and apoptosis in cardiac H9C2 cells when pre-treated before DOX exposure.
  • The findings suggest that TPO could play a cardioprotective role for patients receiving DOX by reducing cell damage and promoting cell survival.

Article Abstract

Cardiac toxicity has been the major concern when using doxorubicin (DOX) in cancer therapy. Thrombopoietin (TPO) protects cardiac cells from DOX-induced cell damage; however, its molecular mechanism remains exclusive. The anti-autophagic and anti-apoptotic effects of TPO upon DOX treatment were studied in the cardiac H9C2 cell line, with bafilomycin A1 treatment as a positive control for autophagy inhibition. Cell viability was measured by Cell Counting Kit-8 assay in different treatment groups. The mRNA and/or protein levels of apoptotic markers and autophagy-associated factors were detected. The mean number of microtubule-associated protein 1A/1B-light chain 3 (LC3) puncta per cell was quantified to indicate autophagosomes and autolysosomes, of which the ones co-stained with lysosomal-associated membrane protein 1 were considered as autolysosomes. DOX treatment (5 µg/ml, 24 h) significantly impaired H9C2 cell viability compared with the control, while TPO pretreatment (10 ng/ml, 36 h) improved cell viability upon DOX treatment. DOX exposure markedly increased LC3 puncta in H9C2 cells, and TPO pretreatment reduced the number of autophagosomes, but showed no significant inhibitory effect on autolysosome formation. The autophagy inhibition by TPO upon DOX treatment was confirmed according to protein quantification of LC3-II and nucleoporin 62. TPO also suppressed autophagy-promoting protein Beclin-1, and elevated the anti-autophagic factors GATA-binding protein-4 and B cell lymphoma-2. Furthermore, TPO reduced DOX-induced apoptosis in H9C2 cells, as reflected by the amount changes of caspase-3. Taken together, these results revealed that TPO has a protective role in H9C2 cells from DOX-induced autophagy as well as apoptosis, and indicated that TPO may act as a cardioprotective drug in DOX-treated patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780751PMC
http://dx.doi.org/10.3892/ol.2017.7410DOI Listing

Publication Analysis

Top Keywords

h9c2 cells
16
dox treatment
16
cell viability
12
tpo
9
cells dox-induced
8
cell
8
tpo dox
8
h9c2 cell
8
autophagy inhibition
8
lc3 puncta
8

Similar Publications

Chrydintins A () and B (), two new sesquiterpenoids were isolated from ., together with four known ones identified as 9-hydroxyeudesma-4,7(11)-dien-6-one (), (7,9,10)-9-hydroxy-11-methoxyeudesm-4-en-6-one (), curcumenone (), and polydactin B (), respectively. The structures of isolated compounds were determined by HR-ESI-MS, NMR analysis, and quantum chemical calculation.

View Article and Find Full Text PDF

Purpose: Ciprofol is a novel intravenous anesthetic that has been increasingly used in clinical anesthesia and sedation. Studies suggested that ciprofol reduced oxidative stress and inflammatory responses to alleviate cerebral ischemia/reperfusion (I/R) injury, but whether ciprofol protects the heart against I/R injury and the mechanisms are unknown. Herein, we assessed the effects of ciprofol on ferroptosis during myocardial I/R injury.

View Article and Find Full Text PDF

Background: Aconitine has cardiotoxicity, but the mechanism of cardiotoxicity induced by aconitine is limited. The aim of this study was to investigate the mechanism of myocardial injury induced by aconitine.

Methods: Using aconitine, ROS inhibitor N-acetylcysteine(NAC), the autophagy activitor Rapamycin (Rap) or the P38/MAPK pathway activitor Dehydrocorydaline treats H9C2 cells.

View Article and Find Full Text PDF

The processes of autophagy, including autophagosome formation, fusion of autophagosomes with lysosomes, and degradation of autophagosomes by lysosomes, are regulated by various mechanisms. We recently found that treatment with resveratrol, an activator of the NAD-dependent protein deacetylase Sirtuin-1 (SIRT1), in a mouse model prevented autophagosome accumulation in the heart with high mTORC1 activity. In this study, we investigated whether SIRT1 mediates the effects of resveratrol on autophagosome elimination using a cardiomyocyte model.

View Article and Find Full Text PDF

Quercetin preserves mitochondria-endoplasmic reticulum contact sites improving mitochondrial dynamics in aged myocardial cells.

Biogerontology

December 2024

Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Col. Belisario Domínguez-Sección XVI, Tlalpan, 14080, Mexico City, Mexico.

Cardiomyocyte senescence plays a crucial role in the pathophysiology of age-related cardiovascular disease. Senescent cells with impaired contractility, mitochondrial dysfunction, and hypertrophic growth accumulate in the heart during aging, contributing to cardiac dysfunction and remodeling. Mitochondrial dynamics is altered in aging cells, leading to changes in their function and morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: