The dispersion of pathogenic microorganisms consists of the transport of pathogens from their source to inoculate a new host. Agricultural and economic importance of the Soybean root rot justifies studying this disease, especially the role of insects as dispersers. The aim of this study was to evaluate the role of the ladybird beetle, Cycloneda sanguinea Linnaeus (Coleoptera: Coccinellidae) in the dispersion of pathogens that cause Soybean root rot. Three pathogen species, Macrophomina phaseolina (Tassi) (Sphaeropsidales: Botryosphaeriaceae), Fusarium incarnatum-equiseti species complex (FIESC), and F. commune (Skovgaard) O'Donnell & Nirenberg were isolated from the midgut of ladybird beetles and cultured. Macrophomina phaseolina was identified by morphology while for the other two species, DNA was sequenced. The DNA extracted was amplified in the Internal Transcriber Spacer (ITS) region, sequenced and compared to voucher sequences deposited in the GenBank. Sequences of nucleotide ITS1-5.8 S were identified in the regions of rDNA-ITS4 ribosomal DNA. This is the first report of Macrophomina phaseolina (Tassi) (Sphaeropsidales: Botryosphaeriaceae), Fusarium incarnatum-equiseti species complex (FIESC), and F. commune (Skovgaard) O'Donnell & Nirenberg, being dispersed by C. sanguinea in Brazilian soybean fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799320 | PMC |
http://dx.doi.org/10.1038/s41598-018-20587-8 | DOI Listing |
Plant Physiol Biochem
January 2025
Department of Applied Biosciences, Kyungpook National University, 41566, Daegu, Republic of Korea. Electronic address:
Plant growth-promoting rhizobacteria (PGPR) and biochar (BC) are recognized as effective biological agents for enhancing stress tolerance and mitigating heavy metal toxicity in crops. Therefore, this study aims to investigate the effects of the cadmium (Cd)-resistant PGPR strain Leclercia adecarboxylata HW04 (>4 mM Cd resistance) on soybean plants exposed to 300 μM Cd. HW04 was observed to possess the innate ability to synthesize indole-3-acetic acid and exopolysaccharides, which facilitated the absorption of Cd in the medium.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
Soybean () is a vital crop that is rich in high-quality protein and edible oil for human nutrition and agriculture. Saline-alkali stress, a severe environmental challenge, significantly limits soybean productivity. In this study, we found that the nodule receptor kinase GmNARK enhances soybean tolerance to alkali stress besides nodulation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Plant Biotechnology Center, College of Agronomy, Jilin Agriculture University, Changchun 130118, China.
Phytophthora root and stem rot caused by () is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of (soybean) to infection.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
Intercropping has the potential to improve phosphorus (P) uptake and crop growth, but the potential benefits and relative contributions of root morphology and arbuscular mycorrhizal fungi (AMF) colonization are largely unknown for the intercropping of rice and soybean under dry cultivation. Both field and pot experiments were conducted with dry-cultivated rice ( L.) and soybean ( L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, NortheastInstitute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
Members of the B-Box (BBX) family of proteins play crucial roles in the growth and development of rice. Here, we identified a rice BBX protein, Oryza sativa BBX2 (OsBBX2), which exhibits the highest expression in the root. The transcription of follows a diurnal rhythm under photoperiodic conditions, peaking at dawn.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!