Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background/aims: Decellularized cardiac extracellular matrix (cECM) has been widely considered as an attractive scaffold for engineered cardiac tissue (ECT), however, its application is limited by immunogenicity and shortage of organ donation. Skeletal ECM (sECM) is readily available and shows similarities with cECM. Here we hypothesized that sECM might be an alternative scaffold for ECT strategies.
Methods: Murine ventricular tissue and anterior tibial muscles were sectioned into 300 mm-thick, and then cECM and sECM were acquired by pretreatment/SDS/TritonX-100 three-step-method. Acellularity and morphological properties of ECM was assessed. SECM was recellularized with murine embryonic stem cells (mESCs) or mESC-derived cardiomyocytes (mESC-CMs), and was further studied by biocompatibility assessment, immunofluorescent staining, quantitative real-time PCR and electrophysiological experiment.
Results: The relative residual contents of DNA, protein and RNA of sECM were comparable with cECM. The morphological properties and microstructure of sECM were similar to cECM. SECM supported mESCs to adhere, survive, proliferate and differentiate into functional cardiac microtissue with both electrical stimulated response and normal adrenergic response. Purified mESC-CMs also could adhere, survive, proliferate and form a sECM-based ECT with synchronized contraction within 6 days of recellularization.
Conclusion: ECMs from murine skeletal muscle support survival and cardiac differentiation of mESCs, and are suitable to produce functional ECT patch. This study highlights the potential of patient specific of sECM to replace cECM for bioengineering ECT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000486813 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!