Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vγ9Vδ2 T cells are a minor subset of lymphocytes in the peripheral blood that has been extensively investigated for their tolerability, safety and anticancer efficacy. A hindrance to the broad application of these cells for adoptive cellular immunotherapy has been attaining clinically appropriate numbers of Vγ9Vδ2 T cells. Furthermore, Vγ9Vδ2 T cells exist at low frequencies among cancer patients. We, therefore, sought to conceive an economical method that allows for a quick and robust large-scale expansion of Vγ9Vδ2 T cells. A two-step protocol was developed, in which peripheral blood mononuclear cells (PBMCs) from healthy donors or cancer patients were activated with Zometa and interleukin (IL)-2, followed by co-culturing with gamma-irradiated, CD64-, CD86- and CD137L-expressing K562 artificial antigen-presenting cells (aAPCs) in the presence of the anti-CD3 antibody OKT3. We optimized the co-culture ratio of K562 aAPCs to immune cells, and migrated this method to a G-Rex cell growth platform to derive clinically relevant cell numbers in a Good Manufacturing Practice (GMP)-compliant manner. We further include a depletion step to selectively remove αβ T lymphocytes. The method exhibited high expansion folds and a specific enrichment of Vγ9Vδ2 T cells. Expanded Vγ9Vδ2 T cells displayed an effector memory phenotype with a concomitant down-regulated expression of inhibitory immune checkpoint receptors. Finally, we ascertained the cytotoxic activity of these expanded cells by using nonmodified and chimeric antigen receptor (CAR)-engrafted Vγ9Vδ2 T cells against a panel of solid tumor cells. Overall, we report an efficient approach to generate highly functional Vγ9Vδ2 T cells in massive numbers suitable for clinical application in an allogeneic setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcyt.2017.12.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!