Background: Scaling-up of effective anti-malarial control strategies in Central-West region of Senegal has resulted in the sharp decline in malaria prevalence in this area. However, despite these strategies, residual malaria transmission has been observed in some villages (hot spots). The objective of this study was to assess the impact of indoor residual spraying (IRS) with pirimiphos-methyl on malaria transmission in hot spot areas.

Methods: The malaria vector population dynamics were monitored in each of the six selected villages (4 of which used IRS, 2 were unsprayed control areas) using overnight human landing catches (HLC) and pyrethrum spray catches (PSC). The host source of blood meals from freshly fed females collected using PSC was identified using the direct ELISA method. Females caught through HLC were tested by ELISA for the detection of Plasmodium falciparum circumsporozoite protein and Anopheles gambiae complex was identified using PCR.

Results: Preliminary data shown that the densities of Anopheles populations were significantly lower in the sprayed areas (179/702) compared to the control. Overall, malaria transmission risk was 14 times lower in the intervention zone (0.94) compared to the control zone (12.7). In the control areas, three Anopheles species belonging to the Gambiae complex (Anopheles arabiensis, Anopheles coluzzii and Anopheles melas) maintained the transmission, while only An. coluzzii was infective in the sprayed areas.

Conclusion: The preliminary data from this pilot study showed that IRS with the CS formulation of pirimiphos-methyl is likely very effective in reducing malaria transmission risk. However, additional studies including further longitudinal entomological surveys as well as ecological and ethological and genetical characterization of vectors species and their populations are needed to better characterize the entomological impact of indoor residual spraying with pirimiphos-methyl in the residual transmission areas of Senegal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5800081PMC
http://dx.doi.org/10.1186/s12936-018-2212-xDOI Listing

Publication Analysis

Top Keywords

malaria transmission
20
impact indoor
12
indoor residual
12
residual spraying
12
entomological impact
8
spraying pirimiphos-methyl
8
pilot study
8
control areas
8
gambiae complex
8
preliminary data
8

Similar Publications

Large-scale surveillance and informed vector control approaches are urgently needed to ensure that national malaria programs remain effective in reducing transmission and, ultimately, achieving malaria elimination targets. In South America, Anopheles darlingi is the primary malaria vector and is responsible for the majority of Plasmodium species transmission. However, little is known about the molecular markers associated with insecticide resistance in this species.

View Article and Find Full Text PDF

Background: The Lihir Islands of Papua New Guinea, located in an area with high burden of malaria and hosting a large mining operation, offer a unique opportunity to study transmission. There, we investigated human and vector factors influencing malaria transmission.

Methods: In 2019, a cross-sectional study was conducted on 2,914 individuals assessing malaria prevalence through rapid diagnostic tests (RDT), microscopy, and quantitative PCR (qPCR).

View Article and Find Full Text PDF

Factors associated with contracting border malaria: A systematic and meta-analysis.

PLoS One

January 2025

School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.

Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria.

View Article and Find Full Text PDF

Introduction: Malaria molecular surveillance (MMS) can provide insights into transmission dynamics, guiding national control programs. We previously designed AmpliSeq assays for MMS, which include different traits of interest (resistance markers and deletions), and SNP barcodes to provide population genetics estimates of and parasites in the Peruvian Amazon. The present study compares the genetic resolution of the barcodes in the AmpliSeq assays with widely used microsatellite (MS) panels to investigate population genetics of Amazonian malaria parasites.

View Article and Find Full Text PDF

Genetic control - the deliberate introduction of genetic traits to control a pest or vector population - offers a powerful tool to augment conventional mosquito control tools that have been successful in reducing malaria burden but that are compromised by a range of operational challenges. Self-sustaining genetic control strategies have shown great potential in laboratory settings, but hesitancy due to their invasive and persistent nature may delay their implementation. Here, instead, we describe a self-limiting strategy, designed to have geographically and temporally restricted effect, based on a Y chromosome-linked genome editor (YLE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!