GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10 μm) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (<1 nm). FDTD modeling demonstrated HE is the dominant transverse mode in the nanowires with a radius of sub-100 nm, and single-mode lasing from vertical cavity nanowire arrays with different doping concentrations on a sapphire substrate was interestingly observed in photoluminescence measurements. High Q-factors of ∼1139-2443 were obtained in nanowire array lasers with a radius and length of 65 nm and 2 μm, respectively, corresponding to a line width of 0.32-0.15 nm (minimum threshold of 3.31 MW/cm). Our results show that fabrication of high-quality GaN nanowire arrays with adaptable aspect ratio and large-area uniformity is feasible through a top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.7b07653 | DOI Listing |
Molecules
January 2025
Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
Plastics are widely produced due to their stability and ease of manufacturing, but many of them quickly become a waste, breaking down into microplastics and nanoplastics. While methods for the identification and characterization of plastic particles are well consolidated, the small size of nanoplastics presents challenges for their detection and analysis. Furthermore, due to the difficulty of identifying nanoplastics, analytical studies concerning their effect on cells and a comprehensive spectroscopic characterization are still lacking.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Pharmacy, Shimane University Hospital, 89-1 Enya, Izumo 693-8501, Shimane, Japan.
Antimicrobial resistance (AMR) poses a critical global health threat, necessitating the optimal use of existing antibiotics. Pharmacokinetic/pharmacodynamic (PK/PD) principles provide a scientific framework for optimizing antimicrobial therapy, particularly to respond to evolving resistance patterns. This review examines PK/PD strategies for antimicrobial dosing optimization, focusing on three key aspects.
View Article and Find Full Text PDFSci Justice
January 2025
Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD2 1HD, Scotland, UK.
The assessment of measurement uncertainty of an analytic method is a requirement for forensic toxicologists and drug chemists. There are two main methods for estimating measurement uncertainty: the bottom-up and the top-down approaches. The bottom-up approach has been suggested in current practice guides including 'Guide to the Expression of Uncertainty in Measurement (GUM)' published by ISO, and a guide to 'Quantifying Uncertainty in Analytical Measurement' published by EURACHEM.
View Article and Find Full Text PDFEur J Pain
March 2025
Department of Life Sciences, South Kensington, Imperial College London, London, UK.
Background: Healthy individuals demonstrate considerable heterogeneity upon dynamic quantitative sensory testing assessment of endogenous pain modulatory mechanisms. For those who stratify into a 'pro-nociceptive profile' cohort, consisting of inefficient conditioned pain modulation (CPM) and elevated temporal summation of pain (TSP), the optimal approach for balancing the net output of pain modulatory processes towards anti-nociception remains unresolved. In this translational healthy human and rat study, we examined whether descending modulation countered spinal amplification during concurrent application of a CPM and TSP paradigm alongside pupillometry since pontine activity was previously linked to functionality of endogenous pain modulatory mechanisms and pupil dilation.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
School of Information Engineering, Quanzhou Ocean Institute, Quanzhou 362700, China.
This study designs and develops a wearable exoskeleton piano assistance system for individuals recovering from neurological injuries, aiming to help users regain the ability to perform complex tasks such as playing the piano. While soft robotic exoskeletons have proven effective in rehabilitation therapy and daily activity assistance, challenges remain in performing highly dexterous tasks due to structural complexity and insufficient motion accuracy. To address these issues, we developed a modular division method based on multi-domain mapping and a top-down process model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!