Computing the Free Energy without Collective Variables.

J Chem Theory Comput

SISSA, Scuola Internazionale Superiore Studi Avanzati , via Bonomea 265 , I-34136 Trieste , Italy.

Published: March 2018

We introduce an approach for computing the free energy and the probability density in high-dimensional spaces, such as those explored in molecular dynamics simulations of biomolecules. The approach exploits the presence of correlations between the coordinates, induced, in molecular dynamics, by the chemical nature of the molecules. Due to these correlations, the data points lay on a manifold that can be highly curved and twisted, but whose dimension is normally small. We estimate the free energies by finding, with a statistical test, the largest neighborhood in which the free energy in the embedding manifold can be considered constant. Importantly, this procedure does not require defining explicitly the manifold and provides an estimate of the error that is approximately unbiased up to large dimensions. We test this approach on artificial and real data sets, demonstrating that the free energy estimates are reliable for data sets on manifolds of dimension up to ∼10, embedded in an arbitrarily large space. In practical applications our method permits the estimation of the free energy in a space of reduced dimensionality without specifying the collective variables defining this space.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.7b00916DOI Listing

Publication Analysis

Top Keywords

free energy
20
computing free
8
collective variables
8
molecular dynamics
8
data sets
8
energy
5
free
5
energy collective
4
variables introduce
4
introduce approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!