A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maxwell-Hall access resistance in graphene nanopores. | LitMetric

Maxwell-Hall access resistance in graphene nanopores.

Phys Chem Chem Phys

Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.

Published: February 2018

The resistance due to the convergence from bulk to a constriction, for example, a nanopore, is a mainstay of transport phenomena. In classical electrical conduction, Maxwell, and later Hall for ionic conduction, predicted this access or convergence resistance to be independent of the bulk dimensions and inversely dependent on the pore radius, a, for a perfectly circular pore. More generally, though, this resistance is contextual, it depends on the presence of functional groups/charges and fluctuations, as well as the (effective) constriction geometry/dimensions. Addressing the context generically requires all-atom simulations, but this demands enormous resources due to the algebraically decaying nature of convergence. We develop a finite-size scaling analysis, reminiscent of the treatment of critical phenomena, that makes the convergence resistance accessible in such simulations. This analysis suggests that there is a "golden aspect ratio" for the simulation cell that yields the infinite system result with a finite system. We employ this approach to resolve the experimental and theoretical discrepancies in the radius-dependence of graphene nanopore resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935251PMC
http://dx.doi.org/10.1039/c7cp07924aDOI Listing

Publication Analysis

Top Keywords

convergence resistance
8
resistance
6
maxwell-hall access
4
access resistance
4
resistance graphene
4
graphene nanopores
4
nanopores resistance
4
convergence
4
resistance convergence
4
convergence bulk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!