This paper proposes a post-processing strategy for recovered images of fluorescence molecular tomography. A threshold value is adaptively obtained from the recovered images without external interference, which is objective because it is extracted from the reconstructed result. The recovered images from simulation experiments and physical phantom experiments are processed by this threshold method. And by visualization, the processed images are clearer than those with no post-processing. The full width at half-maximum and contrast-to-noise ratio are then utilized to further verify the effectiveness of the post-processing method, being capable of removing spurious information from the original images, thus bringing convenience to users.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.35.000256DOI Listing

Publication Analysis

Top Keywords

recovered images
16
threshold method
8
images
6
adaptive threshold
4
recovered
4
method recovered
4
images fmt
4
fmt paper
4
paper proposes
4
proposes post-processing
4

Similar Publications

Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.

View Article and Find Full Text PDF

In this Letter, we present a novel, to the best of our knowledge, approach for recovering objects directly from the Fraunhofer diffraction integral, where the diffraction field of an object is approximated by the Fourier transform of this object augmented by an additional phase factor. This phase factor at the observation plane is universal for the diffraction fields generated by objects located at the same plane and illuminated by the same monochromatic plane wave. It can be first extracted from dividing the Fraunhofer diffraction field by the Fourier transform of an object reference.

View Article and Find Full Text PDF

Fourier ptychographic microscopy (FPM) can provide high-throughput imaging by computationally combining low-resolution images at different spatial frequencies within the Fourier domain. The core algorithm for FPM reconstruction draws upon phase retrieval techniques, including methods such as the ptychographic iterative engine (PIE), regularized PIE (rPIE), and embedded pupil function FPM (EPRY-FPM). The calibration of the physical setup plays a crucial role in the quality of the reconstructed high space-bandwidth product (SPB) image.

View Article and Find Full Text PDF

We present a non-interferometric technique for quantitative phase imaging (QPI) that is cost-effective, easily integrated into standard microscopes, and capable of wide-field imaging with noncoherent light. Our method measures the phase gradient through optical differentiation using spatially variable amplitude filters, accommodating a range of transmission functions, including commercially available variable neutral-density filters. This flexibility is made possible by a general relationship we derive.

View Article and Find Full Text PDF

Background: Repeat neurological assessment is standard in cases of severe acute brain injury. However, conventional measures rely on overt behavior. Unfortunately, behavioral responses may be difficult or impossible for some patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!