We present a new approach for accurate terahertz time-domain spectroscopy of thin films deposited on dielectric substrates. Our approach relies on the simultaneous measurement of film and substrate, allowing for 15 nm-precise determination of the thickness variation between the sample and reference. Our approach allows for unprecedentedly accurate determination of the terahertz conductivity of the thin film. We demonstrate our approach on a 10 nm thin iron film deposited on a 500 μm MgO substrate. We determine the Drude momentum relaxation time in iron to within 0.15 fs uncertainty.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.43.000447 | DOI Listing |
We propose a refractive index (RI) sensing method that leverages the frequency multiplication capability of a photocarrier terahertz (PC-THz) comb to enhance sensitivity and speed. By incorporating a PC-THz comb as a frequency multiplier for a RI-sensing optical frequency comb (OFC), we achieve significant amplification of the RI-dependent mode spacing ( ) shift. Our results show a 3100-fold increase in sensitivity, confirmed through the accurate measurement of ethanol-water solutions with varying concentrations.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen, Germany.
This work leverages ultrasonic guided waves (UGWs) to detect and localize damage in structures using lightweight Artificial Intelligence (AI) models. It investigates the use of machine learning (ML) to train the effects of the damage on UGWs to the model. To reduce the number of trainable parameters, a physical signal processing approach is applied to the raw data before passing the data to the model.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Advanced Micro-/Nano- Devices Lab, Department of Systems Design Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1, Canada.
Existing biomedical imaging modalities are often restricted by their substantial size, high costs, and potential risks associated with ionizing radiation exposure. Given these challenges, there is an urgent need for innovative imaging systems that not only excel in detection performance but are also compact, cost-effective, and ensure safety for biomedical applications. In response to these requirements, our research introduces an advanced terahertz (THz) microbolometer array imaging system (MAIS), specifically engineered for biomedical detection.
View Article and Find Full Text PDFSci Rep
January 2025
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China.
The terahertz (THz) security scanner offers advantages such as non-contact inspection and the ability to detect various types of dangerous goods, playing an important role in preventing terrorist attacks. We aim to accurately and quickly detect concealed objects in THz security images. However, current object detection algorithms face many challenges when applied to THz images.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Inner Mongolia Grassland Station, Huhhot, Inner Mongolia 010020, China. Electronic address:
Owing to the complicated geographical locations and climates, cultivation and selection of forage seeds are challenging. For the first time, we qualitatively distinguished the drought and cold resistance of forage seeds with the time domain and refractive index spectra using terahertz (THz) time-domain spectroscopy. A multilayer structure propagation (MSP) model was developed based on the effective medium and light transport theory to reveal the underlying biological mechanisms of drought and cold resistance of forage seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!