Peloruside A-Induced Cell Death in Hypoxia Is p53 Dependent in HCT116 Colorectal Cancer Cells.

J Nat Prod

Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry , Palacky University, Hnevotinska 5 , 77900 Olomouc , Czech Republic.

Published: March 2018

HCT116 colorectal cancer cell sensitivity to peloruside A (PLA) in normoxia is not altered by hypoxia preconditioning of the cells. We examined whether the PLA effects were altered in hypoxia and whether the activity was dependent on p53. The cytotoxicity of PLA in wild-type HCT116 cells was largely unaffected by hypoxia; however, cells in which p53 was knocked out showed resistance. Knockout of the p21 gene had little effect on the activity of PLA in hypoxia. It was concluded that the response of cells to the microtubule-stabilizing agent PLA under hypoxic conditions is a p53-dependent process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.7b00961DOI Listing

Publication Analysis

Top Keywords

hct116 colorectal
8
colorectal cancer
8
altered hypoxia
8
hypoxia
5
cells
5
pla
5
peloruside a-induced
4
a-induced cell
4
cell death
4
death hypoxia
4

Similar Publications

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.

Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.

View Article and Find Full Text PDF

LZZAY01 accelerated autophagy and apoptosis in colon cancer cells and improved gut microbiota in CAC mice.

Microbiol Spectr

January 2025

Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China.

Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a common gastrointestinal cancer, and even though oxaliplatin chemotherapy is effective, there is a high likelihood of relapse, indicating the presence of oxaliplatin-resistant CRC. Therefore, it is crucial to comprehend the molecular mechanisms of oxaliplatin resistance and develop effective strategies to counter drug resistance. Numerous studies have demonstrated the close association between microRNAs (miRNAs) and drug resistance in CRC.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!