Five monomeric oxovanadium(V) complexes [VO(OMe)(NO)] with the nitro or halogen substituted quinolin-8-olate ligands were synthesized and characterized using Fourier transform infrared, H and C NMR, high-resolution mass spectrometry-electrospray ionization as well as X-ray diffraction and UV-vis spectroscopy. These complexes exhibit high catalytic activity toward oxidation of inert alkanes to alkyl hydroperoxides by HO in aqueous acetonitrile with the yield of oxygenate products up to 39% and turnover number 1780 for 1 h. The experimental kinetic study, the CD and O labeled experiments, and density functional theory (DFT) calculations allowed to propose the reaction mechanism, which includes the formation of HO· radicals as active oxidizing species. The mechanism of the HO· formation appears to be different from those usually accepted for the Fenton or Fenton-like systems. The activation of HO toward homolysis occurs upon simple coordination of hydrogen peroxide to the metal center of the catalyst molecule and does not require the change of the metal oxidation state and formation of the HOO· radical. Such an activation is associated with the redox-active nature of the quinolin-8-olate ligands. The experimentally determined activation energy for the oxidation of cyclohexane with complex [VO(OCH)(5-Cl-quin)] (quin = quinolin-8-olate) is 23 ± 3 kcal/mol correlating well with the estimate obtained from the DFT calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.7b02684 | DOI Listing |
Small
January 2025
Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.
View Article and Find Full Text PDFChem Rec
January 2025
Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institution of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China.
This paper emphasizes the critical role of electrolyte selection in enhancing the electrochemical performance of nonaqueous Li-O batteries (LOBs). It provides a comprehensive overview of various electrolyte types and their effects on the electrochemical performance for LOBs, offering insights for future electrolyte screening and design. Despite recent advancements, current electrolyte systems exhibit inadequate stability, necessitating the urgent quest for an ideal nonaqueous electrolyte.
View Article and Find Full Text PDFNano Lett
January 2025
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China.
Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, PR China.
Non-precious transition metal-based electrocatalysts with high activities are promising candidates for substituting Pt- or Ru-based electrocatalysts in hydrogen evolution. In this study, we propose core-shell engineering to combine the amorphous NiCoP and crystalline CoP (a-NiCoP/CoP@NF), which requires an ultra-low overpotential of only 26 mV to achieve the benchmark current density of 10 mA cm. Furthermore, it achieves an industrial-level hydrogen evolution current density of 500 mA cm with excellent stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!