Synthesis, crystal structure and characterization of a three-dimensional Cd coordination polymer constructed from 2,5-bis(1H-1,2,4-triazol-1-yl)terephthalate.

Acta Crystallogr C Struct Chem

Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.

Published: February 2018

Bifunctional organic ligands are very popular for the design of coordination polymers because they allow the formation of a great diversity of structures. In the title coordination polymer, the new bifunctional inversion-symmetric ligand 2,5-bis(1H-1,2,4-triazol-1-yl)terephthalic acid (abbreviated as Hbttpa) links Cd cations, giving rise to the three-dimensional Cd coordination polymer catena-poly[diaqua[μ-2,5-bis(1H-1,2,4-triazol-1-yl)terephthalato-κO:O:N:N]cadmium(II)], [Cd(CHNO)(HO)] or [Cd(bttpa)(HO)]. The asymmetric unit consists of half a Cd cation, half a bttpa ligand and one coordinated water molecule. The Cd cation is located on a twofold axis and is hexacoordinated in a distorted octahedral environment of four O and two N atoms. Four different bttpa ligands contribute to this coordination, with two carboxylate O atoms in trans positions and two triazole N atoms in cis positions. Two aqua ligands in cis positions complete the coordination sphere. The fully deprotonated bttpa ligand sits about a crystallographic centre of inversion and links two Cd cations to form a chain in a μ-terephthalato-κO:O bridge. This chain extends in the other two directions via the triazole heterocycles, producing a three-dimensional framework. O-H...O hydrogen bonds and weak C-H...N interactions stabilize the three-dimensional crystal structure. The FT-IR spectrum, X-ray powder pattern, thermogravimetric behaviour and solid-state photoluminescence of the title polymer have been investigated. The photoluminescence is enhanced and red-shifted with respect to the uncoordinated ligand.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229618000025DOI Listing

Publication Analysis

Top Keywords

coordination polymer
12
crystal structure
8
three-dimensional coordination
8
links cations
8
bttpa ligand
8
cis positions
8
coordination
6
synthesis crystal
4
structure characterization
4
three-dimensional
4

Similar Publications

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

n-butane (n-C4H10) and isobutane (i-C4H10) are important raw materials in chemical industry. The separation of the two hydrocarbon isomers via distillation is challenging and energy-consuming. Herein we report the adsorption behavior of a microporous cobalt formate framework [Co3(HCOO)6] for potential kinetic separation of butane isomers.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Rh(III)-Catalyzed [4 + 2] Annulation and Dehydrogenative Annulation of -Chloroimines with Maleimides.

J Org Chem

January 2025

Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

We herein report a Rh(III)-catalyzed C-H bond coupling of -chloroimines with maleimides, in which the [4 + 2] annulation and dehydrogenative annulation processes can be selectively achieved by simply adjusting the reaction conditions. This protocol is compatible with various functional groups, shows exquisite selectivity, and presents a concise synthetic procedure to respective products in moderate to good yields. With all these merits, this strategy may be applicable in the construction of related azaheterocyclic skeletons.

View Article and Find Full Text PDF

Nanocellulose composites based on embedded europium-containing coordination polymers for the detection of antibiotics.

Int J Biol Macromol

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Developing sensitive and reliable methods for detecting antibiotics in water solutions is essential for protecting public health and the environment. Here, we report a novel fluorescent film with superior mechanical properties and detection response to ciprofloxacin (CIP), achieved through the in-situ growth of europium-based metal-organic frameworks on TEMPO-oxidized cellulose nanofibrils (TOCNF). Firstly, Eu(III) and 2,6-pyridinedicarboxylic acid (DPA) served as precursors, and a simple self-assembly strategy was employed to grow the composite film material (Eu-DPA@TOCNF) in situ on TOCNF, which exhibited characteristic emission peaks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!