Some reports have shown neuroprotective effects of caffeine in several neurodegenerative disorders. However, its mechanism of action is not completely clear. Therefore, the aim of this study was to explore the interference of ryanodine, N-methyl-D-aspartate (NMDA) and adenosine modulators with the neuroprotective effects of caffeine against β-amyloid (Aβ) neurotoxicity in the SHSY5Y cells. The SHSY5Y cells were treated with Aβ23-35 (20µM) and/or caffeine (0.6 and 1mM), or both for 24 hours. Adenosine (20, 40, 60, 80, 100µM), NMDA (20, 50, 70, 90µM), dantrolene (2, 4, 6, 8, 10µM) were also added to the medium and incubated for 24 hours. The cell viability was measured via the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) method. The data were analyzed using one-way ANOVA followed by Bonferroni test. Caffeine at all the used concentrations (0.6, 0.8, 0.9, 1, and 3mM) significantly protected neuronal cells against Aβ neurotoxicity. Adenosine at the concentrations of 20, 40, 80 and 100μM diminished the neuroprotective effects of caffeine (0.6 and 1mM) against Aβ neurotoxicity. NMDA at the concentrations of 20, 50, 70 and 90μM blocked caffeine (0.6 and 1mM) neuroprotective effects. Dantrolene at the concentration of 2, 4, 6, 8 and 10μM diminished the neuroprotective effects of caffeine (0.6mM) and at the concentrations of 2 and 10μM impede caffeine (1mM) neuroprotection against Aβ neurotoxicity. Caffeine produced neuroprotective effect against Aβ neurotoxicity. Blockade of adenosine and NMDA receptors, as well as the activation of ryanodine receptors, may contribute to the neuroprotective effects of caffeine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788212PMC
http://dx.doi.org/10.15171/apb.2017.069DOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
24
effects caffeine
20
aβ neurotoxicity
20
caffeine 1mm
16
caffeine
11
neurotoxicity shsy5y
8
ryanodine n-methyl-d-aspartate
8
shsy5y cells
8
diminished neuroprotective
8
neuroprotective
7

Similar Publications

Comparative effects of dexpanthenol and thymoquinone on colistin-induced neurotoxicity in rats.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Infectious Diseases and Clinical Microbiology, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Türkiye.

Colistin is used as a last-line treatment for multidrug-resistant gram-negative bacilli. Neurotoxicity limits clinic use of colistin. The use of colistin causes oxidative stress and inflammation.

View Article and Find Full Text PDF

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.

View Article and Find Full Text PDF

Trehalose Ameliorates Zebrafish Emotional and Social Deficits Caused by CLN8 Dysfunction.

Cells

January 2025

Neurobiology and Molecular Medicine Unit, IRCCS Fondazione Stella Maris, 56128 Calambrone, Italy.

CLN8 and other neuronal ceroid lipofuscinoses (NCLs) often lead to cognitive decline, emotional disturbances, and social deficits, worsening with disease progression. Disrupted lysosomal pH, impaired autophagy, and defective dendritic arborization contribute to these symptoms. Using a zebrafish model, we identified significant impairments in locomotion, anxiety, and aggression, along with subtle deficits in social interactions, positioning zebrafish as a useful model for therapeutic studies in NCL.

View Article and Find Full Text PDF

Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.

Cells

January 2025

Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.

While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!