A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sulfonamides as Inhibitors of - Potential New Treatments for Leishmaniasis. | LitMetric

Introduction: Leishmaniasis is an endemic disease caused by the protozoan parasite Leishmania. Current treatments for the parasite are limited by cost, availability and drug resistance as the occurrence of leishmaniasis continues to be more prevalent. Sulfonamides are a class of compounds with medicinal properties which have been used to treat bacterial and parasitic disease via various pathways especially as antimetabolites for folic acid.

Methods: New derivatives of sulfonamide compounds were assessed for their impact on Leishmania cell viability and potential pathways for inhibition were evaluated. Leishmania tarentolae (ATCC Strain 30143) axenic promastigote cells were grown in brain heart infusion (BHI) medium and treated with varying concentrations of the new sulfonamide compounds. Light microscopy and viability tests were used to assess the cells with and without treatment.

Discussion: A non-water soluble sulfonamide was determined to have 90-96% viability inhibition 24 hours after treatment with 100 µM final concentration. Because Leishmania are also autotrophs for folate precursors, the folic acid pathway was identified as a target for sulfonamide inhibition. When folic acid was added to untreated Leishmania, cell proliferation increased. A water soluble derivative of the inhibitory sulfonamide was synthesized and evaluated, resulting in less viability inhibition with a single dose (approximately 70% viability inhibition after 24 hours with 100 µM final concentration), but additive inhibition with multiple doses of the compound.

Results: However, the potential mechanism of inhibition was different between the water-soluble and non-water soluble sulfonamides. The inhibitory effects and potential pathways of inhibition indicate that these compounds may be new treatments for this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5748876PMC
http://dx.doi.org/10.2174/2211352515666170216143401DOI Listing

Publication Analysis

Top Keywords

viability inhibition
12
sulfonamide compounds
8
leishmania cell
8
potential pathways
8
inhibition
8
pathways inhibition
8
non-water soluble
8
inhibition hours
8
100 µm
8
µm final
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!