Monocytes/Macrophages promote vascular CXCR4 expression via the ERK pathway in hepatocellular carcinoma.

Oncoimmunology

Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.

Published: December 2017

We recently identified CXCR4 as a novel vascular marker for vessel sprouting in hepatocellular carcinoma (HCC) tissues. Thus, CXCR4 endothelial cells (ECs) could serve as a potential predictor for patients who may benefit from sorafenib treatment; however, the mechanism that regulates vascular CXCR4 expression in HCC remains largely unknown. Here, we revealed a large number of monocytes/macrophages (Mo/Mϕ) to be selectively enriched in the perivascular areas of CXCR4 vessels in HCC samples. The depletion of Mo/Mϕ with gadolinium chloride (GdCl) or zoledronic acid (ZA) treatment significantly reduced vascular CXCR4 expression in HCC tumors. This phenomenon was also confirmed in CCR2-KO mice, which exhibited reduced infiltration of inflammatory Mo/Mϕ in tumor tissues. Mechanistic studies revealed that inflammatory cytokines derived from tumor conditioned Mo/Mϕ, especially TNF-α, could up-regulate CXCR4 expression on ECs. TNF-α-induced activation of the Raf-ERK pathway, but not Notch signaling, was responsible for the expression of CXCR4. Moreover, the combination treatment of sorafenib with ZA was associated with improved anti-tumor efficacy by significantly reducing vascular CXCR4 expression. These findings revealed that Mo/Mϕ could regulate CXCR4 expression in the tumor vasculature. Thus, the inhibition of Mo/Mϕ inflammation might enhance the treatment efficacy of sorafenib in HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790393PMC
http://dx.doi.org/10.1080/2162402X.2017.1408745DOI Listing

Publication Analysis

Top Keywords

cxcr4 expression
24
vascular cxcr4
16
cxcr4
10
hepatocellular carcinoma
8
expression hcc
8
expression
7
mo/mϕ
6
vascular
5
hcc
5
monocytes/macrophages promote
4

Similar Publications

Despite recent advances in the targeted therapy of AML, the disease continues to have a poor prognosis. Allogeneic hematopoietic stem cell transplantation (alloSCT) remains to be the curative therapy option for fit patients with high-risk disease. Especially patients with relapsed or refractory (r/r) AML continue to have poor outcomes.

View Article and Find Full Text PDF

Aging-induced immune microenvironment remodeling fosters melanoma in male mice via γδ17-Neutrophil-CD8 axis.

Nat Commun

December 2024

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.

Aging is associated with increased tumor metastasis and poor prognosis. However, how an aging immune system contributes to the process is unclear. Here, single-cell RNA sequencing reveals that in male mice, aging shifts the lung immune microenvironment towards a premetastatic niche, characterized by an increased proportion of IL-17-expressing γδT (γδ17) and neutrophils.

View Article and Find Full Text PDF

In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.

View Article and Find Full Text PDF

Objective: The poultry industry is significantly impacted by viral infections, particularly Newcastle Disease Virus (NDV), which leads to substantial economic losses. It is essential to comprehend how the sequence of development affects biological pathways and how early exposure to infections might affect immune responses.

Methods: This study employed transcriptome analysis to investigate host-pathogen interactions by analyzing gene expression changes in NDV-infected chicken embryos' lungs.

View Article and Find Full Text PDF

Objectives: To observe the role of miR-139-5p and Notch1 signaling pathway in regulation of homing of bone mesenchymal stem cells (BMSCs) of asthmatic rats.

Methods: Normal rat BMSCs were co-cultured with bronchial epithelial cells from normal or asthmatic rats, followed by transfection with miR-139-5p mimics or a negative control sequence. The changes in cell viability and cell cycle were analyzed, and the cellular expressions of CXCR4 and SDF-1 were detected using immunofluorescence staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!