Plant breeding programs in local regions may have genetic and phenotypic variations that are desirable and shape adaptability during the establishment of local populations. Despite the characterization of genetic population structures in various kinds of populations, the effects of variations in phenotype on agro-economical traits currently remain unclear. In the present study, we evaluated phenotypic changes in 26 agro-economical traits among the local population during rice breeding programs in Hokkaido. Wide variations were observed in all 26 agro-economical traits with continuous distributions. In order to elucidate improvements in these agro-economic traits during rice breeding programs in Hokkaido, values were compared between genetic population structures. Traits were classified into four patterns based on the timing of significant differences. Patterns A and B showed significant differences once and twice, respectively. Pattern C gradually showed significant differences. Pattern D showed no significant differences for the desired directions. Based on the changes in phenotype observed in the present study and the genetic population structure for the local population in Hokkaido, a model of the artificial selection for phenotypes in genetic diversity among the local population during plant breeding programs has been proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5790052 | PMC |
http://dx.doi.org/10.1270/jsbbs.17071 | DOI Listing |
BMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250103, Shandong, China.
Objectives: Toona sinensis, commonly known as Chinese toon, is a perennial woody plant with significant economic and ecological importance. This study employed whole-genome resequencing of 180 T. sinensis samples collected from Shandong to analyze genetic variation and diversity, ultimately identifying 18,231 high-quality SNPs after rigorous quality control and linkage disequilibrium pruning.
View Article and Find Full Text PDFBMC Genomics
January 2025
Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China.
Background: The evolution and development of flowers are biologically essential and of broad interest. Maize and sorghum have similar morphologies and phylogeny while harboring different inflorescence architecture. The difference in flower architecture between these two species is likely due to spatiotemporal gene expression regulation, and they are a good model for researching the evolution of flower development.
View Article and Find Full Text PDFEMBO J
January 2025
College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, China.
Chloride (Cl) ions cause major damage to crops in saline soils. Understanding the key factors that influence Cl uptake and translocation will aid the breeding of more salt-tolerant crops. Here, using genome-wide association study and transcriptomic analysis, we identified a NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER family (NPF) protein, GmNPF7.
View Article and Find Full Text PDFSci Rep
January 2025
U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
Thermoinhibition, the suppression of seed germination by high temperatures, is an adaptive trait that ensures successful seedling establishment in natural environments. While beneficial for wild plants, thermoinhibition can adversely affect crop yields due to uneven and reduced germination rates, particularly in the face of climate change. To understand the genetic basis of thermoinhibition, we conducted a comprehensive genetic analysis of a diverse panel of Lactuca spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!