Objective: To evaluate the efficacy and side effects of alfaxalone administered intramuscularly (IM) as a sedative agent in guinea pigs undergoing survey radiographs.
Study Design: Prospective clinical trial.
Animals: A total of 30 client-owned guinea pigs.
Methods: Following baseline assessments, 5 mg kg alfaxalone was administered IM. Heart rate, arterial haemoglobin oxygen saturation, respiratory rate, rectal body temperature, palpebral reflex, response to toe and ear pinch, righting reflex, posture, jaw tone and reaction to manipulation were assessed before and after sedation at 5-minute intervals. The time elapsed from onset of sedation to return of locomotion and coordinated limb movements, the quality of recovery and the occurrence of undesired effects were observed and recorded.
Results: The mean ± standard deviation onset of sedation was 2.7 ± 0.6 minutes. The physiological variables remained within normal ranges until completion of the procedure. Palpebral reflex and responsiveness to both ear and toe pinch were maintained during sedation. Neither hypoxaemia nor hypothermia was observed. The duration of sedation was 29.3 ± 3.2 minutes. Sedation and recovery were uneventful, and adverse effects were not observed.
Conclusions And Clinical Relevance: In conclusion, 5 mg kg of IM alfaxalone represents a valuable sedation protocol for healthy guinea pigs undergoing minor noninvasive procedures. Further trials are required to investigate its cardiovascular effects, clinical usefulness in unhealthy patients and its combined use with analgesics for procedures associated with nociception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaa.2017.08.004 | DOI Listing |
Adv Sci (Weinh)
January 2025
ENT Institute and Department of Otolaryngology, Eye & ENT Hospital of Fudan University, Shanghai, 200031, China.
Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.
View Article and Find Full Text PDFLipids
January 2025
Molecular Biology Institute, University of California, Los Angeles, California, USA.
The order Rodentia comprises nearly 45% of all extant taxa, currently organized into 31 living families, some 450 genera, and roughly 2010 species (Kelt & Patton, 2020). Considering that rodents began evolving at least 66 million years ago, it is not surprising that they have diversified into five distinct suborders. With the advent of molecular biology, this difference can often be seen at the molecular level as well.
View Article and Find Full Text PDFOtol Neurotol
January 2025
Department of Otolaryngology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.
Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.
Stem Cell Reports
December 2024
Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, Guangzhou Medical University, Guangzhou 511436, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, P.R. China. Electronic address:
Guinea pigs are valuable models for human disease research, yet the lack of established pluripotent stem cell lines has limited their utility. In this study, we isolate and characterize guinea pig epiblast stem cells (gpEpiSCs) from post-implantation embryos. These cells differentiate into the three germ layers, maintain normal karyotypes, and rely on FGF2 and ACTIVIN A signaling for self-renewal and pluripotency.
View Article and Find Full Text PDFAnat Histol Embryol
January 2025
Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!