Background: A substantial proportion of Plasmodium species infections are asymptomatic with densities too low to be detectable with standard diagnostic techniques. The importance of such asymptomatic plasmodium infections in malaria transmission is probably related to their duration and density. To explore the duration of asymptomatic plasmodium infections and changes in parasite densities over time, a cohort of participants who were infected with Plasmodium parasites was observed over a 2-year follow-up period.
Methods: In this open cohort study, inhabitants of four villages in Vietnam were invited to participate in baseline and subsequent 3-monthly surveys up to 24 months, which included the collection of venous blood samples. Samples were batch-screened using ultra-sensitive (u)PCR (lower limit of detection of 22 parasites per mL). Participants found to be infected by uPCR during any of these surveys were invited to join a prospective cohort and provide monthly blood samples. We estimated the persistence of Plasmodium falciparum and Plasmodium vivax infections and changes in parasite densities over a study period of 24 months.
Findings: Between Dec 1, 2013, and Jan 8, 2016, 356 villagers participated in between one and 22 surveys. These study participants underwent 4248 uPCR evaluations (11·9 tests per participant). 1874 (32%) of 4248 uPCR tests indicated a plasmodium infection; 679 (36%) of 1874 tests were P falciparum monoinfections, 507 (27%) were P vivax monoinfections, 463 (25%) were co-infections with P falciparum and P vivax, and 225 (12%) were indeterminate species of Plasmodium. The median duration of P falciparum infection was 2 months (IQR 1-3); after accounting for censoring, participants had a 20% chance of having parasitaemia for 4 months or longer. The median duration of P vivax infection was 6 months (3-9), and participants had a 59% chance of having parasitaemia for 4 months or longer. The parasite densities of persistent infections oscillated; following ultralow-density infections, high-density infections developed frequently.
Interpretation: Persistent largely asymptomatic P vivax and P falciparum infections are common in this area of low seasonal malaria transmission. Infections with low-density parasitaemias can develop into much higher density infections at a later time, which are likely to sustain malaria endemicity.
Funding: The Wellcome Trust, Bill & Melinda Gates Foundation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5910058 | PMC |
http://dx.doi.org/10.1016/S1473-3099(18)30046-X | DOI Listing |
J Trop Med
January 2025
National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Laboratory of Parasite and Vector Biology, Ministry of Public Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.
Glycosaminoglycan (GAG) molecules on the surface of red blood cells play an important regulatory role in the invasion of merozoites of apicomplexan protozoa. Heparan sulfate, a type of GAG molecule, has been identified as an important receptor facilitating the invasion of red blood cells by these parasites. Proteins in the parasite that exhibit strong affinity for heparin may play a pivotal role in this invasion process.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, Federal University of São Paulo, São Paulo, SP, Brazil.
Chagas disease (CD), a parasitic infection, may have ocular repercussions in its cardiologic form, since a history of heart disease of other etiologies already has been established as a risk factor for neuropathies and maculopathies. The aim of the present study was to investigate preclinical structural and vascular optic nerve head (ONH) and macular parameters in patients with chronic CD. Nineteen patients with CD and 19 healthy subjects were evaluated with optical coherence tomography, optical coherence tomography angiography, and Laguna ONhE® software.
View Article and Find Full Text PDFExp Biol Med (Maywood)
January 2025
West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana.
Malaria causes significant morbidity and mortality worldwide, disproportionately impacting sub-Saharan Africa. Disease phenotypes associated with infection can vary widely, from asymptomatic to life-threatening. To date, prevention efforts, particularly those related to vaccine development, have been hindered by an incomplete understanding of which factors impact host immune responses resulting in these divergent outcomes.
View Article and Find Full Text PDFVet World
November 2024
Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Background And Aim: Dengue fever is a recurring arboviral disease. The presence of livestock and domestic animals potentially increases the risk of dengue fever in an area due to the shared habitats of vectors and humans. Therefore, this study aimed to determine the vulnerability map of dengue disease and identify the influence of livestock and domestic animals on the number of cases in Bantul Regency.
View Article and Find Full Text PDFSci Rep
January 2025
International Livestock Research Institute (ILRI), Human and Animal Health, Berlin, Germany.
Crimean Congo hemorrhagic fever (CCHF) is a re-emerging tick-borne zoonosis that is caused by CCHF virus (CCHFV). The geographical distribution of the disease and factors that influence its occurrence are poorly known. We analysed historical records on its outbreaks in various countries across the sub-Saharan Africa (SSA) to identify hotspots and determine socioecological and demographicfactors associated with these outbreaks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!