Rare neurological diseases shed light onto universal neurobiological processes. However, molecular mechanisms connecting genetic defects to their disease phenotypes are elusive. Here, we obtain mechanistic information by comparing proteomes of cells from individuals with rare disorders with proteomes from their disease-free consanguineous relatives. We use triple-SILAC mass spectrometry to quantify proteomes from human pedigrees affected by mutations in ATP7A, which cause Menkes disease, a rare neurodegenerative and neurodevelopmental disorder stemming from systemic copper depletion. We identified 214 proteins whose expression was altered in ATP7A fibroblasts. Bioinformatic analysis of ATP7A-mutant proteomes identified known phenotypes and processes affected in rare genetic diseases causing copper dyshomeostasis, including altered mitochondrial function. We found connections between copper dyshomeostasis and the UCHL1/PARK5 pathway of Parkinson disease, which we validated with mitochondrial respiration and Drosophila genetics assays. We propose that our genealogical "omics" strategy can be broadly applied to identify mechanisms linking a genomic locus to its phenotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876136PMC
http://dx.doi.org/10.1016/j.cels.2018.01.008DOI Listing

Publication Analysis

Top Keywords

copper dyshomeostasis
8
rare
5
rare disease
4
disease mechanisms
4
mechanisms identified
4
identified genealogical
4
genealogical proteomics
4
copper
4
proteomics copper
4
copper homeostasis
4

Similar Publications

Copper-Based Bio-Coordination Nanoparticle for Enhanced Pyroptosis-Cuproptosis Cancer Immunotherapy through Redox Modulation and Glycolysis Inhibition.

Small

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China.

Copper-based nanoparticles have garnered significant interest in cancer therapy due to their ability to induce oxidative stress and cuproptosis in cancer cells. However, their antitumor effectiveness is constrained by the dynamic redox balance and the metabolic shift between oxidative phosphorylation and glycolysis. Here, a polydopamine-coated copper-α-ketoglutaric acid (α-KG) coordination polymer nanoparticle (CKPP) is designed for combined pyroptosis-cuproptosis cancer immunotherapy by amplifying reactive oxygen species (ROS) production and regulating cellular metabolism.

View Article and Find Full Text PDF

Dysfunctional copper homeostasis in affects genomic and neuronal stability.

Redox Biochem Chem

December 2024

Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany.

While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized.

View Article and Find Full Text PDF

Though metal ions like copper, iron, zinc, etc. are essential, but their dyshomeostasis is associated with several disorders. Therefore, fast, sensitive, and cost-effective monitoring of these cations will have a significant impact.

View Article and Find Full Text PDF

Novel hypothesis and therapeutic interventions for irritable bowel syndrome: interplay between metal dyshomeostasis, gastrointestinal dysfunction, and neuropsychiatric symptoms.

Mol Cell Biochem

November 2024

Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.

Irritable bowel syndrome is a gastrointestinal disorder due to multiple pathologies. While patients with this condition experience anxiety and depressed mood more frequently than healthy individuals, it is unclear how gastrointestinal dysfunction interacts with such neuropsychiatric symptoms. Data suggest that irritable bowel syndrome patients predominantly display a lower zinc intake, which presumably impairs enterochromaffin cells producing 5-hydroxytryptamine, gut bacteria fermenting short-chain fatty acids, and barrier system in the intestine, with the accompanying constipation, diarrhea, low-grade mucosal inflammation, and visceral pain.

View Article and Find Full Text PDF

Introduction: Copper dyshomeostasis can be related to an increase in copper levels, resulting in toxicity, or to a decrease in tissues levels, impairing cuproenzyme activities. Inside cells, copper can be found in the cytoplasm and inside organelles, and the main organelle that compartmentalizes copper is the mitochondrion. This organelle can form networks and may fuse or fission from this, determining the mitochondrial fusion and fission processes, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!