Unlabelled: Volatile emissions from decomposing animal waste are known environmental pollutants. The black soldier fly, Hermetia illucens (L.), is being evaluated for industrialization as a means to recycle wastes and produce protein for use as food and feed. We examined the ability of black soldier fly larvae to reduce odorous compounds associated with animal wastes. Black soldier fly larvae were reared under laboratory conditions on poultry, swine, and dairy manure at feed rates of 18.0 and 27.0 g every other day until 40% reached the prepupal stage. Volatile emissions were collected and analyzed from freshly thawed as well as the digested waste when 90% of the black soldier fly larvae reached the prepupal stage. Volatiles were also collected simultaneously from manure not inoculated with black soldier fly larvae (non-digested) and held under similar conditions. Manure samples were analyzed for relative amounts of nine select odorous volatile organic compounds: phenol, 4-methylphenol, indole, 3-methylindole, propanoic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and pentanoic acid. Black soldier fly larvae reduced emissions of all volatile organic compounds by 87% or greater. Complete reductions were observed for 2-methly propanoic acid in digested poultry manure, phenol, 4-methylphenol, indole and all five fatty acids in digested swine manure, and 4-methylphenol, indole, 3-methylindole and all five acids in digested dairy manure. This study is the first to identify volatile emissions from manure digested by black soldier fly larvae and compare to those found in non-digested manure. These data demonstrate additional benefits of using black soldier fly larvae as a cost-effective and environmentally friendly means of livestock manure management in comparison to current methods.
Capsule: Black soldier fly larvae are capable of altering the overall profile of volatile organic compounds and reducing levels of targeted odorous compounds in livestock manure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2018.01.019 | DOI Listing |
Comp Biochem Physiol B Biochem Mol Biol
December 2024
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
The potential of insects as alternative ingredients in animal feeds is well-established. However, limited information is available on the use of insect oils as alternative lipid sources in aquafeeds. To address this, a study was conducted on gilthead seabream (Sparus aurata) juveniles to evaluate the effects of including black soldier fly (Hermetia illucens) larvae oil (HIO).
View Article and Find Full Text PDFWaste Manag
December 2024
Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7H, 9220 Aalborg Ø, Denmark. Electronic address:
Large scale production of insect larvae is considered a sustainable way to upcycle various organic waste- and by-products into more valuable food and feed products. The sustainability of insect larvae production depends on the substrates and species being used, but comparative studies that include both growth and efficiency are lacking. Here we compare larval fitness, including survival, development time, weight, substrate conversion efficiency, substrate reduction, and metabolic parameters across different combinations of densities and waste- and by-product-based substrates on the two fly species, the house fly (Musca domestica) and the black soldier fly (Hermetia illucens).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Centre for Nutrition and Food Sciences (CNAFS), Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland 4072, Australia. Electronic address:
The black soldier fly larvae (BSFL) are well known to utilise a wide variety of organic waste streams, delivering a product rich in protein (30-50%) and lipids (15-49%) and other micronutrients. The objective of this study was to evaluate the ability of NIR spectroscopy combined with chemometrics to predict the concentration of fatty acids in BSFL reared in different commercial waste streams. Intact BSFL samples were analysed using a bench top NIR instrument where calibration models for fatty acids were developed using partial least squares (PLS) regression.
View Article and Find Full Text PDFBMC Vet Res
December 2024
Department of Veterinary Sciences, University of Turin, Grugliasco, Italy.
Background: The inclusion of sustainable protein sources in poultry feed has become essential for improving animal welfare in livestock production. Black soldier fly larvae are a promising solution due to their high protein content and sustainable production. However, most research has focused on fast-growing poultry breeds, while the effects on native breeds, such as the Bianca di Saluzzo, are less explored.
View Article and Find Full Text PDFAnimal
November 2024
CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Geel Campus, Kleinhoefstraat 4, 2440 Geel, Belgium. Electronic address:
Black soldier fly larvae (BSFL, Hermetia illucens) contain high amounts of proteins and essential amino acids and are therefore an appropriate feed source. However, they lack essential fatty acids (FAs), specifically ω-3 and ω-6, making them a less desirable feed choice for aquaculture. The aim of this study was to increase the ω-3 and ω-6 FA concentrations in BSFL by manipulating the FA composition in their rearing substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!