Chronic arsenic exposure is associated with the development of urothelial carcinoma of the bladder (UCB). To elucidate the contribution of arsenic exposure to urothelial cancer stem cell (CSC) generation, we established an in vitro stepwise malignant model transformed by chronically exposing human urothelial cells to arsenic. Using this model, we found that chronic arsenic exposure endows urothelial cells with malignant stemness properties including increased expression of stemness-related factors such as SOX2, sphere formation, self-renewal, invasion and chemoresistance. SOX2 was gradually and irreversibly overexpressed in line with acquired sphere-forming and self-renewal abilities. Following gene set enrichment analyses of arsenic-exposed and arsenic-unexposed cells, we found COX2 as an enriched gene for oncogenic signature. Mechanistically, arsenic-induced COX2/PGE2 increases SOX2 expression that eventually promotes malignant stem cell generation and repopulation. In urine samples from 90 subjects exposed to arsenic and 91 control subjects, we found a significant linear correlation between SOX2 and COX2 expression and the potential of SOX2 and COX2 expression as urinary markers to detect subjects exposed to arsenic. Furthermore, the combination marker yielded a high sensitivity for UCB detection in a separate cohort. Finally, our in vitro model exhibits basal-type molecular features and dual inhibition of EGFR and COX2 attenuated stem cell enrichment more efficiently than an EGFR inhibitor alone. In conclusion, the COX2/PGE2-SOX2 axis promotes arsenic-induced malignant stem cell transformation. In addition, our findings indicate the possible use of SOX2 and COX2 expression as urinary markers for the risk stratification and detection of UCB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5938132 | PMC |
http://dx.doi.org/10.1002/ijc.31290 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.
Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.
Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.
Front Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.
Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.
Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.
Front Biosci (Landmark Ed)
January 2025
The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.
Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.
Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!