Objective: To utilize the 3D inversion recovery prepared ultrashort echo time with cones readout (IR-UTE-Cones) MRI technique for direct imaging of lamellar bone with comparison to the gold standard of computed tomography (CT).
Materials And Methods: CT and MRI was performed on 11 shoulder specimens and three patients. Five specimens had imaging performed before and after glenoid fracture (osteotomy). 2D and 3D volume-rendered CT images were reconstructed and conventional T1-weighted and 3D IR-UTE-Cones MRI techniques were performed. Glenoid widths and defects were independently measured by two readers using the circle method. Measurements were compared with those made from 3D CT datasets. Paired-sample Student's t tests and intraclass correlation coefficients were performed. In addition, 2D CT and 3D IR-UTE-Cones MRI datasets were linearly registered, digitally overlaid, and compared in consensus by these two readers.
Results: Compared with the reference standard (3D CT), glenoid bone diameter measurements made on 2D CT and 3D IR-UTE-Cones were not significantly different for either reader, whereas T1-weighted images underestimated the diameter (mean difference of 0.18 cm, p = 0.003 and 0.16 cm, p = 0.022 for readers 1 and 2, respectively). However, mean margin of error for measuring glenoid bone loss was small for all modalities (range, 1.46-3.92%). All measured ICCs were near perfect. Digitally registered 2D CT and 3D IR-UTE-Cones MRI datasets yielded essentially perfect congruity between the two modalities.
Conclusions: The 3D IR-UTE-Cones MRI technique selectively visualizes lamellar bone, produces similar contrast to 2D CT imaging, and compares favorably to measurements made using 2D and 3D CT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960612 | PMC |
http://dx.doi.org/10.1007/s00256-018-2898-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!