Staphylococcus aureus infection is a rising public health care threat. S. aureus is believed to have elaborate regulatory networks that orchestrate its virulence. Despite its importance, the systematic understanding of the transcriptional landscape of S. aureus is limited. Here, we describe the primary transcriptome landscape of an epidemic USA300 isolate of community-acquired methicillin-resistant S. aureus. We experimentally determined 1,861 transcription start sites with their principal promoter elements, including well-conserved -35 and -10 elements and weakly conserved -16 element and 5' untranslated regions containing AG-rich Shine-Dalgarno sequence. In addition, we identified 225 genes whose transcription was initiated from multiple transcription start sites, suggesting potential regulatory functions at transcription level. Along with the transcription unit architecture derived by integrating the primary transcriptome analysis with operon prediction, the measurement of differential gene expression revealed the regulatory framework of the virulence regulator Agr, the SarA-family transcriptional regulators, and β-lactam resistance regulators. Interestingly, we observed a complex interplay between virulence regulation, β-lactam resistance, and metabolism, suggesting a possible tradeoff between pathogenesis and drug resistance in the USA300 strain. Our results provide platform resource for the location of transcription initiation and an in-depth understanding of transcriptional regulation of pathogenesis, virulence, and antibiotic resistance in S. aureus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5797083PMC
http://dx.doi.org/10.1038/s41598-018-20661-1DOI Listing

Publication Analysis

Top Keywords

staphylococcus aureus
8
tradeoff pathogenesis
8
pathogenesis drug
8
drug resistance
8
understanding transcriptional
8
primary transcriptome
8
transcription start
8
start sites
8
β-lactam resistance
8
aureus
6

Similar Publications

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

Introduction: Infectious keratitis is a rare but devastating complication following photorefractive keratectomy (PRK) that may lead to visual impairment. This study assessed the clinical features, treatment strategies, and outcomes of post-PRK infectious keratitis.

Methods: This retrospective study was conducted on patients with post-PRK infectious keratitis presenting to Khalili Hospital, Shiraz, Iran, from June 2011 to March 2024.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!