In erythromycin-resistant bacteria, the N6 position of A2058 in 23S rRNA is mono- or dimethylated by Erm family methyltransferases. This modification results in cross-resistance to macrolides, lincosamides and streptogramin B. Most inhibitors of Erm methyltransferases developed up-to-date target the cofactor-binding pocket, resulting in a lack of selectivity whereas inhibitors that bind the substrate-binding pocket demonstrate low in vitro activity. In this study, a molecular docking approach followed by biochemical screening was applied to search for inhibitors targeting both cofactor- and substrate-binding pockets of ErmC' methyltransferase. Based on the results of the molecular docking-based virtual screening of the clean-leads subset of the ZINC database, 29 compounds were chosen for experimental verification. Among them inhibitor 28 (ZINC code 32747906), with an IC of 100 μM, decreased the minimal inhibitory concentration of erythromycin in the Escherichia coli strain overexpressing ErmC'. Docking analysis of 28 to the ErmC' structure and the competitive ligand binding assay revealed a non-competitive model of inhibition. Inhibitor 28 served as a template for similarity-based virtual screening, which resulted in the identification of two derivatives 3s (ZINC code 62022572) and 4s (ZINC code 49032257) with an IC of 116 μM and 110 μM, respectively. Our results provide a basis for the development of inhibitors against the Erm-family of enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2017.11.032 | DOI Listing |
Am J Hum Genet
January 2025
Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.
View Article and Find Full Text PDFBMC Cancer
January 2025
Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.
Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.
Reprod Toxicol
January 2025
Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China. Electronic address:
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities.
View Article and Find Full Text PDFFront Biophys
June 2024
Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States.
Zn transport across neuronal membranes relies on two classes of transition metal transporters: the ZnT (SLC30) and ZIP (SLC39) families. These proteins function to decrease and increase cytosolic Zn levels, respectively. Dysfunction of ZnT and ZIP transporters can alter intracellular Zn levels resulting in deleterious effects.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Nu Instruments, Wrexham Industrial Estate, 74 Clywedog Road South, Wrexham, LL13 9XS, United Kingdom.
Zinc (Zn) is an essential element for all living organisms, and Zn isotopes play a key role in studying the formation of disease. Despite extensive studies on Zn isotopes in healthy and diseased human tissues, the role of Zn isotopes in urinary stones remains unexplored. This study investigates Zn isotopes in 37 urinary stones using multi-collector inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!