High levels of faecal contamination in drinking groundwater and recreational water due to poor sanitation, in the sub-rural neighbourhoods of Kinshasa, Democratic Republic of the Congo.

Int J Hyg Environ Health

Université Pédagogique Nationale (UPN), Croisement Route de Matadi et Avenue de la Libération, Quartier Binza/UPN, B.P. 8815 Kinshasa, Democratic Republic of the Congo; University of Geneva, Faculty of science, Department F.-A. Forel for Environmental and Aquatic Sciences, Institute of Environmental Sciences, 66, Boulevard Carl-Vogt, CH - 1205, Geneva, Switzerland; University of Kinshasa (UNIKIN), Faculty of Science, Department of Chemistry, B.P. 190, Kinshasa XI, Democratic Republic of the Congo. Electronic address:

Published: April 2018

In many urban and peri-urban areas of developing countries, shallow wells and untreated water from urban rivers are used for domestic purposes, including drinking water supply, population bathing and irrigation for urban agriculture. The evaluation and monitoring of water quality are therefore necessary for preventing potential human risk associated with the exposure to contaminated water. In this study, physicochemical and bacteriological parameters were assessed in an urban river (named Kokolo Canal/Jerusalem River) draining the municipality of Lingwala (City of Kinshasa, Democratic Republic of the Congo) and in two shallow wells used as drinking water supplies, during the wet and dry seasons in order to estimate the seasonal variation of contamination. The faecal indicator bacteria (FIB) isolated strains (Escherichia coli (E. coli) and Enterococcus (ENT)) from water and surface sediment, were characterized for human-specific bacteroides by molecular approach. The results revealed very high faecal contamination of water from the shallow wells, and of water and sediments from the river, during both wet and dry seasons. During the wet season, E. coli reached the values of 18.6 × 10 and 4.9 × 10 CFU 100 mL in Kokolo Canal and shallow wells, respectively; and Enterococcus reached the values of 7.4 × 10 and 2.7 × 10 CFU 100 mL. Strong mutually positive correlation was observed between E. coli and ENT, with the range of R-value being 0.93 < r < 0.97 (p-value < 0.001, n = 15). The PCR assays for human-specific Bacteroides indicated that more than 98% of 500 isolated FIB strains were of human origin, pointing out the effect of poor household sanitation practices on surface water but also on groundwater contamination. The water samples from the shallow wells and Kokolo Canal were highly polluted with faecal matter in both seasons. However, the pollution level was significantly higher during the wet season compared to the dry season. Physicochemical analysis revealed also very high water electrical conductivity, with values much higher than the recommended limits of the World Health Organization guideline for drinking water. These results highlight the potential human health risk associated with the exposure to water contamination from shallow wells and Kokolo Canal, due to the very high level of human FIB. Rapid, unplanned and uncontrolled population growth in the city of Kinshasa is increasing considerably the water demand, whereas there is a dramatic lack of appropriate sanitation and wastewater facilities, as well as of faecal sludge (and solid waste) management and treatment. The lack of hygiene and the practice of open defecation is leading to the degradation of water quality, consequently the persistence of waterborne diseases in the neighbourhoods of sub-rural municipalities, and there is a growing threat to the sustainability to water resources and water quality. The results of this study should encourage municipality policy and strategy on increasing the access to safely managed sanitation services; in order to better protect surface water and groundwater sources, and limit the proliferation of epidemics touching regularly the city.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijheh.2018.01.003DOI Listing

Publication Analysis

Top Keywords

shallow wells
16
water
9
faecal contamination
8
kinshasa democratic
8
democratic republic
8
republic congo
8
drinking water
8
wet dry
8
dry seasons
8
reached values
8

Similar Publications

In-situ stress plays a pivotal role in influencing the desorption, adsorption, and transportation of coalbed methane. The reservoir gas content represents a pivotal physical parameter, encapsulating both the coalbed methane enrichment capacity and the underlying enrichment law of the reservoir. This investigation collates, computes, and consolidates data concerning pore pressure, breakdown pressure, closure pressure, triaxial principal stress, gas content, lateral pressure coefficient, and other pertinent variables from coal reservoirs within several coal-bearing synclines in the Liupanshui coalfield, China.

View Article and Find Full Text PDF
Article Synopsis
  • Drilling wells in unconsolidated formations aims to improve water extraction efficiency but faces challenges like potential well collapse when targeting greater depths and larger diameters.
  • Experimental investigations explore the effectiveness of various drilling fluids and additives, including bentonite, PAC, Xanthan Gum, calcium carbonate, and aluminum chloride, to enhance wellbore stability in aquifers.
  • Results show that calcium carbonate effectively forms filter cakes that improve stability, while certain formulations like 2% aluminum chloride lead to thicker, but more permeable filter cakes, impacting filtration losses and well performance.
View Article and Find Full Text PDF

A Comparative Theoretical Study of the Atmospheric Chemistry of Dimethyl and Bis(trifluoromethyl) Sulfides.

J Phys Chem A

January 2025

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.

Dimethyl sulfide (CHSCH) is the largest natural source of atmospheric sulfur. Bis(trifluoromethyl) sulfides (CFSCF) are one of the perfluorinated thioethers with great interest as the new refrigerant fluid and dielectric replacement gas for the sake of environmental concern. In order to clarify the effect of fluorine substitution, degradation mechanisms and kinetics for the reactions of CHSCH and CFSCF with OH radicals in the atmosphere have been calculated comprehensively in a comparative manner using various high-level methods.

View Article and Find Full Text PDF

Perfluoroalkyl substances (PFASs) in groundwater and surface water in the Turin metropolitan area (Italy): An attempt to unravel potential point sources and compliance with environmental/drinking water quality standards.

Sci Total Environ

December 2024

Agenzia Regionale per la Protezione dell'Ambiente del Piemonte (ARPA Piemonte), Dipartimento Territoriale di Torino (Piemonte Nord Ovest), Via Pio VII 9, 10135 Torino, Italy.

The study investigated the contribution of five potential point source categories on the occurrence of 19 highly hazardous perfluoroalkyl substances (PFASs) in freshwater from the Turin metropolitan area (Italy) and assessed the quality of groundwater and surface water in compliance with European and Italian guidelines. PFASs were revealed in 29 and 24 % of the investigated shallow (unconfined aquifers) and deep (semi- and confined aquifers) wells with a total concentration, as a sum (ΣPFASs), of 0.01-0.

View Article and Find Full Text PDF
Article Synopsis
  • Urbanization negatively impacts the connection between riparian zones and other water bodies, making it harder for these zones to filter pollutants like nitrate (NO₃) and phosphate (PO₄).
  • A study over 20 years examined water table levels and pollutant concentrations at four sites in Baltimore, revealing increased connectivity and changes in pollutant levels, especially in suburban and urban areas.
  • The findings suggest that shallower water tables promote conditions that reduce NO₃ through denitrification but can increase PO₄, highlighting the influence of urban management practices and the need for further research into these dynamics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!