Background: Atopic dermatitis is a common skin disease characterized by a Th2 cell-dominant inflammatory infiltrate, elevated serum IgE levels and impaired epidermal barrier function. It is associated to abnormal epidermal lamellar body secretion, producing alteration in lipid composition and extracellular lamellar membrane organization.

Objectives: The oxazolone-induced atopic dermatitis in hairless mice was used to evaluate in vivo the effect of the application of a lipid system that mimics the morphology, structure and composition of epidermal lamellar bodies.

Methods: The skin barrier function was evaluated measuring TEWL and skin hydration in vivo. Inflammation was assessed by analysis of serum IgE levels and histological analysis. The microstructure of the intercellular lipid region was also evaluated before and after treatment.

Results: The skin condition was improved after 10 days of treatment indicated by decreased TEWL, decreased serum IgE levels, reduced epidermal thickness and reduced lymphocyte-dominated infiltrate. However, the treatment did no improve skin hydration.

Conclusions: The treatment with this lipid system seems to improve the skin condition by reinforcing the barrier function and reducing the skin inflammation. Therefore, the present study provides evidence that this lipid system combining appropriate lipid composition and morphology could be of interest for the development of future treatments for atopic dermatitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdermsci.2018.01.010DOI Listing

Publication Analysis

Top Keywords

atopic dermatitis
16
serum ige
12
ige levels
12
barrier function
12
lipid system
12
lamellar body
8
oxazolone-induced atopic
8
dermatitis hairless
8
hairless mice
8
epidermal lamellar
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!