Three crosslinked polymeric ionic liquid (PIL) sorbent coatings were used in headspace solid-phase microextraction for the determination of a group of ultraviolet filters. The developed crosslinked PIL-based materials include two polycations and a double confined PIL. The method, in combination with gas chromatography-mass spectrometry, is simple, solvent free, and does not require of any derivatization step. After proper optimization of the methodologies with each developed fiber, the analytical performance was compared with a commercial polyacrylate fiber. A study of the normalized calibration slopes, obtained by dividing the calibration slope of each analyte by the coating volume, revealed that the crosslinked fibers can be used as alternatives to commercial fibers for the determination of the selected group of compounds. In particular, the coating nature of the PIL containing the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide IL as monomer and the 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide IL as crosslinker is the most suitable for the extraction of the selected compounds despite their coating volume, being 3.6 times lower than the commercial polyacrylate fiber. For this fiber, wide linear ranges, correlation coefficients higher than 0.990, limits of detection ranging from 2.8 ng L to 26 ng L and relative standard deviations ranging from 2.5 to 15% were achieved. Finally, all proposed PIL-based fibers were applied towards the analysis of tap water, pool water and lake water, with the majority of the ultraviolet filters being detected and quantified in the last two types of samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2018.01.048 | DOI Listing |
Environ Toxicol Chem
January 2025
US Environmental Protection Agency, Office of Research and Development, Gulf Ecosystem Measurement and Modeling Division, 1 Sabine Island Drive, Gulf Breeze, FL 32561.
Environ Toxicol Chem
January 2025
US Environmental Protection Agency, Office of Research and Development, Ecosystem Processes Division, 980 College Station Road, Athens, GA 30605.
Ophthalmologie
January 2025
Klinik für Augenheilkunde, Klinikum Chemnitz, Flemmingstr. 2, 09116, Chemnitz, Deutschland.
Background: Damage induced by ultraviolet (UV) radiation plays a decisive role in the carcinogenesis of malignant tumors of the eyelids.
Methods: A selective literature search was performed in PubMed and Google Scholar.
Results: Large epidemiological studies show an increase in the prevalence of eyelid tumors in recent decades.
Ophthalmologie
January 2025
Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
Background: The ocular surface is directly exposed to environmental influences. Noxae that have already been identified for the ocular surface are heat, air dryness, pollutant gases, fine dust particles and ultraviolet radiation.
Methods: The current literature was used to investigate the relationship between frequent ocular surface diseases and various environmental factors and to analyze their development over the years.
Langmuir
January 2025
Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
Inclusion complexation of the sunscreen ingredient avobenzone (AVB) with β-cyclodextrin (β-CD) was investigated to improve its aqueous solubility and photostability; another ultraviolet (UV) filter, oxybenzone (OXB), and the phytochemical antioxidant curcumin (CUR) served as a comparison. In this study, the 1-octanol/water partition coefficients, acid dissociation constants, phase-solubility diagrams with β-CD, and ultraviolet-visible (UV-vis) spectral changes induced by UVA1 (365 nm) irradiation were evaluated. β-CD at concentrations 50-100 times that of AVB most effectively protected the photostability of AVB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!