Genome-wide association (GWA) of feed efficiency (FE) could help target important genomic regions influencing FE. Data provided by an international dairy FE research consortium consisted of phenotypic records on dry matter intakes (DMI), milk energy (MILKE), and metabolic body weight (MBW) on 6,937 cows from 16 stations in 4 counties. Of these cows, 4,916 had genotypes on 57,347 single nucleotide polymorphism (SNP) markers. We compared a GWA analysis based on the more classical residual feed intake (RFI) model with one based on a previously proposed multiple trait (MT) approach for modeling FE using an alternative measure (DMI|MILKE,MBW). Both models were based on a single-step genomic BLUP procedure that allowed the use of phenotypes from both genotyped and nongenotyped cows. Estimated effects for single SNP markers were small and not statistically important but virtually identical for either FE measure (RFI vs. DMI|MILKE,MBW). However, upon further refining this analysis to develop joint tests within nonoverlapping 1-Mb windows, significant associations were detected between either measure of FE with a window on each of Bos taurus autosomes BTA12 and BTA26. There was, as expected, no overlap between detected genomic regions for DMI|MILKE,MBW and genomic regions influencing the energy sink traits (i.e., MILKE and MBW) because of orthogonal relationships clearly defined between the various traits. Conversely, GWA inferences on DMI can be demonstrated to be partly driven by genetic associations between DMI with these same energy sink traits, thereby having clear implications when comparing GWA studies on DMI to GWA studies on FE-like measures such as RFI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2017-13364 | DOI Listing |
Mol Plant Microbe Interact
January 2025
ETH Zurich Department of Environmental Systems Science, Plant Pathology Group, Institute of Integrative Biology, Zurich, Zürich, Switzerland.
Adaptation to new climates poses a significant challenge for plant pathogens during range expansion, highlighting the importance of understanding their response to climate to accurately forecast future disease outbreaks. The wheat pathogen is ubiquitous across most wheat production regions distributed across diverse climate zones. We explored the genetic architecture of thermal adaptation using a global collection of 411 strains that were phenotyped across a wide range of temperatures and then included in a genome-wide association study.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
January 2025
From the Division of Trauma and Critical Care, Department of Surgery (K.S.A.), Feinberg School of Medicine, Northwestern University, Illinois; Department of Surgery (K.S.A.), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin; Department of Organ Surgery and Transplantation (M.A.C.) and Department of Organ Surgery and Transplantation (A.B.), University of Copenhagen, Copenhagen, Denmark; Department of Surgery (W.-Q.W.), Vanderbilt University Medical Center, Tennessee, Nashville; Department of Surgery (A.K.), Columbia University Medical Center, New York; Center for Genetic Medicine (J.P., M.R.-P.), Feinberg School of Medicine, Northwestern University; Department of Anesthesiology (R.J.M.), Rush University Medical Center; Division of Trauma and Critical Care, Department of Surgery (H.B.A.), Feinberg School of Medicine, Northwestern University, Chicago, IL; and Department of Organ Surgery and Transplantation (M.H.S.), University of Copenhagen, Copenhagen, Denmark.
Background: Early and accurate diagnosis of sepsis and the ensuing organ dysfunction remain a challenge in the postoperative setting. Susceptibility to infections, as well as the subsequent immunological response, are driven to some extent by the genetic predisposition of the patient. The purpose of this study was to identify novel genetic variants associated with postoperative sepsis (POS) and surgical site infections (SSIs).
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
Five aerobic, Gram-stain-negative bacterial strains, designated as C3-2-a3, B3-2-R+30, C3-2-a4, C3-2-M3 and C3-2-M8, were isolated from the coastal soil of LungmuCo Lake in the Tibet Autonomous Region, PR China. Phylogenetic analyses based on 16S rRNA genes and genomes indicated that these isolates belonged to the genus and showed a high similarity to LNNU 24178 (99.01%), RD2P54 (98.
View Article and Find Full Text PDFAndes Pediatr
October 2024
Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia.
Unlabelled: Inherited Bone Marrow Failure syndromes account for approximately 25% of cases of aplastic anemia in pediatric patients. Next-generation sequencing (NGS) technologies have allowed the diagnosis of an increasing number of hereditary causes of bone marrow failure.
Objective: To determine the diagnostic yield and clinical concordance of NGS in the diagnosis of a cohort of pediatric patients with bone marrow failure.
J Med Microbiol
January 2025
Norwegian Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Troms, Norway.
Infections by carbapenemase-producing (CP-Pa) are concerning due to limited treatment options. The emergence of multidrug-resistant (MDR) high-risk clones is an essential driver in the global rise of CP-Pa. Insights into the molecular epidemiology of CP-Pa are crucial to understanding its clinical and public health impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!