Channelrhodopsin-2 (ChR2), a light-activated cation-selective ion channel, has been widely used as a tool in optogenetic research. ChR2 is specifically sensitive to wavelengths less than 550 nm. One of the methods to expand the sensitivity of a channelrhodopsin to a wider range of wavelengths is to express another channelrhodopsin in the cells by the transduction of an additional gene. Here, we report the characteristic features of cells expressing two types of channelrhodopsins, each having different wavelength sensitivities. In HEK293 cells stably expressing ChR2, photocurrents were elicited at stimuli of 400-550 nm, and the wavelength sensitivity range was expanded by the additional transduction of the modified Volvox channelrhodopsin-1 (mVChR1) gene, which has broad wavelength sensitivities, ranging from 400 to 600 nm. However, the photocurrent at 550 nm was lower than that of the mVChR1-expressing cell; moreover, the turning-on and turning-off constants were delayed, and the deactivation rates were decreased. Meanwhile, the response to lower light intensity was improved by the additional gene. Thus, the transduction of an additional gene is a useful method to improve the light and wavelength sensitivities, as well as photocurrent kinetic profiles, of channelrhodopsins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2018.01.149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!