This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range. Evaluations on human subjects with comparisons against ex situ analysis illustrate the practical utility of these advances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201703334 | DOI Listing |
Sci Rep
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden.
Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.
View Article and Find Full Text PDFNat Commun
January 2025
Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Hydrogel-based soft machines are promising in diverse applications, such as biomedical electronics and soft robotics. However, current fabrication techniques generally struggle to construct multimaterial three-dimensional hydrogel architectures for soft machines and robots, owing to the inherent hydrogel softness from the low-density polymer network nature. Herein, we present a multimaterial cryogenic printing (MCP) technique that can fabricate sophisticated soft hydrogel machines with accurate yet complex architectures and robust multimaterial interfaces.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Jiangsu Province Key Laboratory of Anesthesiology Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
Remote ischemic preconditioning (RIPC) is reported to have early-phase and delayed-phase organ-protective effects. Previous studies have focused on the organ protection of a single RIPC protocol, and the clinical outcomes remain uncertain. Whether the modified RIPC (mRIPC) protocol performed repeatedly provides cardiopulmonary protection is still uncertain.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland.
The increasing antibiotic resistance among bacteria challenges the biotech industry to search for new antibacterial molecules. Endolysin TP84_28 is a thermostable, lytic enzyme, encoded by the bacteriophage (phage) TP-84, and it effectively digests host bacteria cell wall. Biofilms, together with antibiotic resistance, are major problems in clinical medicine and industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!