Decoding the dynamic DNA methylation and hydroxymethylation landscapes in endodermal lineage intermediates during pancreatic differentiation of hESC.

Nucleic Acids Res

Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA.

Published: April 2018

Dynamic changes in DNA methylation and demethylation reprogram transcriptional outputs to instruct lineage specification during development. Here, we applied an integrative epigenomic approach to unveil DNA (hydroxy)methylation dynamics representing major endodermal lineage intermediates during pancreatic differentiation of human embryonic stem cells (hESCs). We found that 5-hydroxymethylcytosine (5hmC) marks genomic regions to be demethylated in the descendent lineage, thus reshaping the DNA methylation landscapes during pancreatic lineage progression. DNA hydroxymethylation is positively correlated with enhancer activities and chromatin accessibility, as well as the selective binding of lineage-specific pioneer transcription factors, during pancreatic differentiation. We further discovered enrichment of hydroxymethylated regions (termed '5hmC-rim') at the boundaries of large hypomethylated functional genomic regions, including super-enhancer, DNA methylation canyon and broad-H3K4me3 peaks. We speculate that '5hmC-rim' might safeguard low levels of cytosine methylation at these regions. Our comprehensive analysis highlights the importance of dynamic changes of epigenetic landscapes in driving pancreatic differentiation of hESC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888657PMC
http://dx.doi.org/10.1093/nar/gky063DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
pancreatic differentiation
16
endodermal lineage
8
lineage intermediates
8
intermediates pancreatic
8
differentiation hesc
8
dynamic changes
8
dna hydroxymethylation
8
genomic regions
8
dna
6

Similar Publications

Unlabelled: is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and . CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML), and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing de-repression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Mitochondrial diseases, caused by mutations in either nuclear or mitochondrial DNA (mtDNA), currently have limited treatment options. For mtDNA mutations, reducing mutant-to-wild-type mtDNA ratio (heteroplasmy shift) is a promising therapeutic option, though current approaches face significant challenges. Previous research has shown that severe mitochondrial dysfunction triggers an adaptive nuclear epigenetic response, characterized by changes in DNA methylation, which does not occur or is less important when mitochondrial impairment is subtle.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) of melanoma risk have identified 68 independent signals at 54 loci. For most loci, specific functional variants and their respective target genes remain to be established. Capture-HiC is an assay that links fine-mapped risk variants to candidate target genes by comprehensively mapping cell-type specific chromatin interactions.

View Article and Find Full Text PDF

Immune Dysregulation and Cellular Composition in Lichen Sclerosus Revealed by Integrative Epigenetic Analysis with Cell Type Deconvolution.

J Inflamm Res

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Engineering Medicine, Beihang University, Beijing, 100191, People's Republic of China.

Background: Lichen sclerosus (LS) is a chronic inflammatory disease affecting skin and mucosal tissues, particularly external genitalia, with a risk of cancer. Its etiology is unknown, possibly involving immune dysregulation and inflammation.

Methods: Study used DNA methylation (DNAme) and single-cell RNA sequencing (scRNA-seq) to compare LS with normal skin.

View Article and Find Full Text PDF

Here, we have discussed the molecular mechanisms of p53-responsive microRNAs dysregulation in response to genotoxic stress in diffuse large B-cell lymphoma (DLBCL) patients. The role of micro ribonucleic acids (microRNAs) in p53-signaling cellular stress has been studied. MicroRNAs are the small non-coding RNAs, which regulate genes expression at post-transcriptional level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!