Background: Eliminating falciparum malaria in Cambodia is a top priority, requiring the implementation of novel tools and strategies to interrupt its transmission. To date, few data are available regarding the contributions to malaria transmission of symptomatic and asymptomatic carriers.

Methods: Direct-membrane and skin feeding assays (DMFAs, SFAs) were performed, using Anopheles minimus and Anopheles dirus, to determine infectivity of symptomatic falciparum-infected patients and malaria asymptomatic carriers; a subset of the latter were followed up for 2 months to assess their transmission potential.

Results: By microscopy and real-time polymerase chain reaction, Plasmodium falciparum gametocyte prevalence rates were, respectively, 19.3% (n = 21/109) and 44% (n = 47/109) on day (D) 0 and 17.9% (n = 5/28) and 89.3% (n = 25/28) in recrudescent patients (Drec) (RT-PCR Drec vs D0 P = .002). Falciparum malaria patient infectivity was low on D0 (6.2%; n = 3/48) and in Drec (8.3%; n = 1/12). Direct-membrane feeding assays and SFAs gave similar results. None of the falciparum (n = 0/19) and 3 of 28 Plasmodium vivax asymptomatic carriers were infectious to mosquitoes, including those that were followed up for 2 months. Overall, P. falciparum gametocytemias were low except in a few symptomatic carriers.

Conclusions: Only symptomatic falciparum malaria patients were infectious to mosquito vectors at baseline and recrudescence, highlighting the need to detect promptly and treat effectively P. falciparum patients.

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiy060DOI Listing

Publication Analysis

Top Keywords

falciparum malaria
12
malaria transmission
8
transmission symptomatic
8
symptomatic asymptomatic
8
feeding assays
8
asymptomatic carriers
8
falciparum
7
symptomatic
5
malaria
5
contribution malaria
4

Similar Publications

Background: The increased occurrence of malaria among Africa's displaced communities poses a new humanitarian problem. Understanding malaria epidemiology among the displaced population in African refugee camps is a vital step for implementing effective malaria control and elimination measures. As a result, this study aimed to generate comprehensive and conclusive data from diverse investigations undertaken in Africa.

View Article and Find Full Text PDF

Selection of combination adjuvants for enhanced immunogenicity of a recombinant CelTOS vaccine against Plasmodium falciparum.

Biochem Biophys Res Commun

January 2025

Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran. Electronic address:

Recently, there has been significant interest in developing combination adjuvants to achieve efficient vaccines. However, it remains uncertain which combinations of adjuvants could best enhance the immune response to the recombinant antigen. In the current study, to improve the immunogenicity of Plasmodium falciparum cell traversal protein for ookinetes and sporozoites (PfCelTOS), we tested three different adjuvants: MPL, Poly I:C, and QS-21 alone or in a triple mixture (MPL/Poly I:C/QS-21; MPQ) and a dual mixture (Poly I:C/QS-21; PQ).

View Article and Find Full Text PDF

A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.

View Article and Find Full Text PDF

Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus . Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite.

View Article and Find Full Text PDF

Variable surface antigen expression, virulence, and persistent infection by malaria parasites.

Microbiol Mol Biol Rev

January 2025

Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA.

SUMMARYThe human malaria parasite is known for its ability to maintain lengthy infections that can extend for over a year. This property is derived from the parasite's capacity to continuously alter the antigens expressed on the surface of the infected red blood cell, thereby avoiding antibody recognition and immune destruction. The primary target of the immune system is an antigen called PfEMP1 that serves as a cell surface receptor and enables infected cells to adhere to the vascular endothelium and thus avoid filtration by the spleen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!