Role of antimicrobial peptides in controlling symbiotic bacterial populations.

Nat Prod Rep

Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.

Published: April 2018

Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7np00056aDOI Listing

Publication Analysis

Top Keywords

symbiotic interactions
12
symbiotic amps
12
amps
9
antimicrobial peptides
8
ncr peptides
8
bacterial symbionts
8
symbiotic
7
role antimicrobial
4
peptides
4
peptides controlling
4

Similar Publications

The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions.

View Article and Find Full Text PDF

Cooperation between symbiotic partners through protein trafficking.

Proc Natl Acad Sci U S A

January 2025

Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institut National des Sciences Appliquées Lyon, Biologie Fonctionnelle, Insectes et Interactions, UMR203, Villeurbanne 69621, France.

View Article and Find Full Text PDF

The coiled-coil protein carrier structure affects the activation of certain endocytosis pathways.

RSC Adv

January 2025

Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology 4-1 Gakuendai, Miyashiro Saitama 345-8501 Japan.

Coiled-coil protein carrier (CCPC) 140 is a rigid and anisotropically structured cationic coiled-coil artificial protein that has displayed up to a 1000 times higher level of cellular internalization activity than that of unstructured cell-penetrating peptides. Previous studies have demonstrated that CCPC 140's rigid and anisotropic structural properties and cationic surface properties are important for its superior cellular internalization activity. In this study, we investigated whether each physicochemical characteristic of CCPC 140 effectively contributed to activating the cellular internalization pathway.

View Article and Find Full Text PDF

Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.

View Article and Find Full Text PDF

Pulling nutrients from Mo-polluted soil by arbuscular mycorrhizal fungi extraradical mycelia is quenching thirsty with poison.

Plant Physiol Biochem

January 2025

College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China.

As an extension of plant root system, arbuscular mycorrhizal fungi (AMF) extraradical mycelium (ERM) can break the limitation of rhizosphere and play an important role in plant nutrient acquisition. However, it remains unclear whether ERM is smart enough to pick out nutrients while avoiding poison, or is unable to pick out nutrients and have to absorb poisons together. Therefore, the present study employed a compartment device to separate the mycelia from roots, aiming to explore the nutrient absorption pathways of mycelia in molybdenum (Mo) pollution soil after inoculation with AMF in maize and vetch plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!