Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) have been shown to exhibit tumor-selective cytotoxicity and have emerged as promising new tools for cancer treatment. However, to date, at least to the best of our knowledge, no data are available as to which substance is more potent in killing cancer cells. Thus, in this study, we systematically compared their abilities to kill human malignant cells from different origins. We found that PSM dose-dependently killed TRAIL-resistant melanoma, osteosarcoma and neuroblastoma cells. Moreover, PSM had little cytotoxicity toward osteoblasts. PSM was more potent than TRAIL in inducing caspase-3/7 activation, mitochondrial network aberration and caspase-independent cell death. We also found that PSM was more potent in inducing plasma membrane depolarization (PMD) and disrupting endoplasmic-mitochondrial Ca2+ homeostasis. Moreover, persistent PMD was caused by different membrane-depolarizing agents; the use of the anti-type II diabetes drug, glibenclamide, alone caused mitochondrial fragmentation and enhanced TRAIL-induced Ca2+ modulation, mitochondrial network abnormalities and caspase-independent cell killing. These results demonstrate that PSM has a therapeutic advantage over TRAIL owing to its greater capacity to evoke caspase-independent cell death via mitochondrial network aberration by disrupting membrane potential and Ca2+ homeostasis. These findings may provide a strong rationale for developing PSM as a novel approach for the treatment of TRAIL-resistant malignant cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807047 | PMC |
http://dx.doi.org/10.3892/ijo.2018.4251 | DOI Listing |
Biosens Bioelectron
January 2025
Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, 300093, Taiwan; Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, 300093, Taiwan. Electronic address:
Modulation in cellular function and cell death through electrostimulation of intracellular organelles with the application of 50 ns pulsed electric field (nsPEF) have been investigated in breast cancerous MCF7 and normal MCF10A cells by developing a three-dimensional microelectrode device integrated with a fluorescence microscope. The findings revealed that nsPEF induced distinct effects on intracellular functions and dynamics in MCF7 and MCF10A cells. MCF10A cells exhibited significantly higher survivability than MCF7 cells, with different modes of cell death observed between them.
View Article and Find Full Text PDFInt J Biochem Cell Biol
December 2024
MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China. Electronic address:
Disulfiram (DSF) and copper (Cu) in combination exhibit powerful anti-cancer effect on a variety of cancer cell lines. Here, we found that DSF/Cu facilitated the accumulation of intracellular reactive oxygen species (ROS), and induced ROS-dependent apoptosis accompanied by chromatin condensation and phosphatidylserine externalization in MCF-7 cells. DSF/Cu caused caspase-independent apoptosis by promoting the AIF translocation from mitochondria to nucleus.
View Article and Find Full Text PDFCell Commun Signal
December 2024
Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
Pyroptosis, an inflammatory regulated cell death (RCD) mechanism, is characterized by cellular swelling, membrane rupture, and subsequent discharge of cellular contents, exerting robust proinflammatory effects. Recent studies have significantly advanced our understanding of pyroptosis, revealing that it can be triggered through inflammasome- and caspase-independent pathways, and interacts intricately with other RCD pathways (e.g.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the Department of Neurology (A.V., M.V.P., D.S.); Department of Clinical Genomics (L.A.S.); Division of Pediatric Pulmonology (N.D., R.P.B.), Department of Pediatrics and Adolescent Medicine; Division of Pediatric Rehabilitation Medicine, Department of Physical Medicine and Rehabilitation (A.E.R.); and Department of Pediatrics and Adolescent Medicine (C.R.F.), Mayo Clinic.
Cell Commun Signal
October 2024
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
Acquired drug resistance is a major challenge in the management of cancer, which underscores the need for discovery and development of novel therapeutic strategies. We report here the mechanism of the anti-cancer activity of a small coordinate complex composed of the rare earth metal praseodymium (Pr) and mercaptopyridine oxide (MPO; pyrithione). Exposure of cancer cells to relatively low concentrations of the conjugate Pr-MPO (5 µM) significantly impairs cell survival in a p53-independent manner and irrespective of the drug resistant phenotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!