Increased productivity in poultry birds by sub-lethal dose of antibiotics is arbitrated by selective enrichment of gut microbiota, particularly short-chain fatty acid producers.

Microbiology (Reading)

Microbiology Laboratory, Department of Botany (DST-FIST & UGC-DRS Funded), Institute of Science, Visva-Bharati (A Central University), Santiniketan, West Bengal 731235, India.

Published: February 2018

Antibiotics are widely used at sub-lethal concentrations as a feed supplement to enhance poultry productivity. To understand antibiotic-induced temporal changes in the structure and function of gut microbiota of chicken, two flocks were maintained for six weeks on a carbohydrate- and protein-rich diet. The feed in the conventional diet (CD) group was supplemented with sub-lethal doses of chlorotetracycline, virginiamycin and amoxicillin, while the organic diet (OD) had no such addition. Antibiotic-fed birds were more productive, with a lower feed conversion ratio (FCR). Their faecal samples also had higher total heterotrophic bacterial load and antibiotic resistance capability. Deep sequencing of 16S rDNA V1-V2 amplicons revealed Firmicutes as the most dominant phylum at all time points, with the predominant presence of Lactobacillales members in the OD group. The productivity indicator, i.e. higher Firmicutes:Bacteroidetes ratio, particularly in the late growth phase, was more marked in CD amplicon sequences, which was supported by culture-based enumerations on selective media. CD datasets also showed the prevalence of known butyrate-producing genera such as Faecalibacterium, Ruminococcus, Blautia, Coprococcus and Bacteroides, which correlates closely with their higher PICRUSt-based in silico predicted 'glycan biosynthesis and metabolism'-related Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues. Semi-quantitative end-point PCR targeting of the butyryl-CoA: acetate CoA-transferase gene also confirmed butyrate producers as being late colonizers, particularly in antibiotic-fed birds in both the CD flocks and commercial rearing farms. Thus, antibiotics preferentially enrich bacterial populations, particularly short-chain fatty acid producers that can efficiently metabolize hitherto undigestable feed material such as glycans, thereby increasing the energy budget of the host and its productivity.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000597DOI Listing

Publication Analysis

Top Keywords

gut microbiota
8
short-chain fatty
8
fatty acid
8
acid producers
8
antibiotic-fed birds
8
increased productivity
4
productivity poultry
4
poultry birds
4
birds sub-lethal
4
sub-lethal dose
4

Similar Publications

Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts.

View Article and Find Full Text PDF

Background/purpose: Dysbiosis of oral microbiota has been reported in late stage of chronic hepatitis B (CHB) infection with cirrhosis. CHB is characterized by the constant virus-induced liver injury which may lead to liver cirrhosis and hepatocellular carcinoma (HCC). However, some patients show normal liver function without antiviral treatment, associating with favourable prognosis.

View Article and Find Full Text PDF

A pectic polysaccharide from Murray alleviates dextran sulfate sodium-induced colitis in mice.

Curr Res Food Sci

December 2024

Department of Immunology, College of Basic Medical Sciences, Jilin University, 126 Xin min Street, Changchun, 130021, China.

Inflammatory bowel disorders (IBD) can lead to severe complications like perforation, bleeding, and colon cancer, posing life-threatening risks. Murray ( Murr.), rich in polysaccharides, has been utilized in traditional diets for thousands of years.

View Article and Find Full Text PDF

Targeted inhibition of Gus-expressing to promote intestinal stem cell and epithelial renovation contributes to the relief of irinotecan chemotoxicity by dehydrodiisoeugenol.

Acta Pharm Sin B

December 2024

The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Irinotecan (CPT11) chemotherapy-induced diarrhea affects a substantial cancer population due to -glucuronidase (Gus) converting 10--glucuronyl-7-ethyl-10-hydroxycamptothecin (SN38G) to toxic 7-ethyl-10-hydroxycamptothecin (SN38). Existing interventions primarily address inflammation and Gus enzyme inhibition, neglecting epithelial repair and Gus-expressing bacteria. Herein, we discovered that dehydrodiisoeugenol (DDIE), isolated from nutmeg, alleviates CPT11-induced intestinal mucositis alongside a synergistic antitumor effect with CPT11 by improving weight loss, colon shortening, epithelial barrier dysfunction, goblet cells and intestinal stem cells (ISCs) loss, and wound-healing.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease. Many studies have shown that microorganisms may be an important pathological factor leading to the onset of RA. Some infectious or non-infectious pathogenic microorganisms and their metabolites may be the initiating factors of the early onset of RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!