Transformation of the rabbit uterine progesterone receptor following binding to several synthetic steroids was studied. Cytosolic receptors were prepared with and without 10 mM sodium molybdate. Following incubation with the 3H-ligands the cytosols were chromatographed on phosphocellulose minicolumns. The rank order of the compounds to promote transformation in the absence of molybdate was: medroxyprogesterone acetate (MPA) greater than 17 alpha, 21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione (R5020) greater than progesterone much greater than deoxycorticosterone (DOC) much greater than 20 alpha-hydroxyprogesterone (20 alpha OH-P). The rank order was the same in the presence of molybdate, but the amount of transformation was reduced by 35-90%. Molybdate inhibited transformation to a greater extent when the receptor was bound to progesterone, DOC and 20 alpha OH-P than when bound to MPA or R5020. The antiprogestin, 11 beta-[4-(dimethylamino)phenyl]-17 beta-hydroxy-17-(1-propynyl)-4,9-estradiene-3-one (RU38486, synthesized by The Upjohn Company and designated U-66990), promoted approximately twice as much receptor transformation as did progesterone. MPA, R5020 and U-66990 all dissociated from the progesterone receptor much more slowly than did progesterone. In all cases dissociation was faster in the presence of molybdate than in its absence. These data demonstrate that potent progestins (MPA and R5020) promote a greater amount of receptor transformation than does progesterone, and that steroids with little progestin bioactivity (DOC and 20 alpha OH-P) promote very little transformation. In addition, the antiprogestin activity of U-66990 cannot be attributed to a lack of progesterone receptor transformation nor to a rapid rate of dissociation from the receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0022-4731(86)90087-7DOI Listing

Publication Analysis

Top Keywords

progesterone receptor
16
receptor transformation
16
alpha oh-p
12
mpa r5020
12
progesterone
9
transformation
9
receptor
8
rank order
8
promote transformation
8
presence molybdate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!