In individuals with cerebral palsy (CP), smaller muscle and atrophy are present at young age. Many people with CP also experience a decline in gross motor function as they age, which might be explained by the loss of muscle mass. The clinical observation of muscle wasting has prompted a comparison with sarcopenia in older adults, and the term accelerated musculoskeletal ageing is often used to describe the hallmark phenotype of CP through the lifespan. However, there has been very little research emphasis on the natural history of ageing with CP and even less with respect to the determinants or prevention of muscle loss with CP. Considering the burgeoning interest in the science of muscle preservation, this paper aims to (i) describe the characteristics of accelerated musculoskeletal ageing in people with CP, (ii) describe the pathophysiology of sarcopenia and parallels with CP, and (iii) discuss possible therapeutic approaches, based on established approaches for sarcopenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989853PMC
http://dx.doi.org/10.1002/jcsm.12287DOI Listing

Publication Analysis

Top Keywords

muscle preservation
8
individuals cerebral
8
cerebral palsy
8
accelerated musculoskeletal
8
musculoskeletal ageing
8
muscle
5
determinants muscle
4
preservation individuals
4
palsy lifespan
4
lifespan narrative
4

Similar Publications

Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.

View Article and Find Full Text PDF

Rigid bronchoscopy (RB) is the gold standard for managing central airway obstruction (CAO), a life-threatening condition caused by both malignant and benign etiologies. Anesthetic management is challenging as it requires balancing deep sedation with maintaining spontaneous breathing to avoid airway collapse. There is no consensus on the optimal anesthetic approach, with options including general anesthesia with neuromuscular blockers or spontaneous assisted ventilation (SAV).

View Article and Find Full Text PDF

Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA).

View Article and Find Full Text PDF

Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress is a crucial factor in the progression of obesity-related type 2 diabetes (diabesity), contributing to skeletal muscle (SKM) dysfunction, calcium imbalance, metabolic inflexibility, and muscle atrophy. The ER and mitochondria together regulate intracellular calcium levels, and melatonin, a natural compound with antioxidant properties, may alleviate these challenges. Our previous research showed that melatonin raises intracellular calcium and preserves muscle structure by enhancing mitochondrial function in obese diabetic rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!