Biologically relevant hydrophilic molecules rarely interact with hydrophobic compounds and surfaces in water owing to effective hydration. Nevertheless, herein we report that the hydrophobic cavity of a polyaromatic capsule, formed through coordination-driven self-assembly, can encapsulate hydrophilic oligo(lactic acid)s in water with relatively high binding constants (up to K =3×10 m ). X-ray crystallographic and ITC analyses revealed that the unusual host-guest behavior is caused by enthalpic stabilization through multiple CH-π and hydrogen-bonding interactions. The polyaromatic cavity stabilizes hydrolyzable cyclic di(lactic acid) and captures tetra(lactic acid) preferentially from a mixture of oligo(lactic acid)s even in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201800432 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!