Keiji Morokuma, William Henry Emerson Professor Emeritus of Emory University and Research Leader at the Fukui Institute for Fundamental Chemistry, Kyoto University, passed away at the age of 83 on November 27, 2017. Morokuma made numerous contributions to theoretical methodologies for the determination of reaction mechanisms and the understanding of intermolecular interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201800390 | DOI Listing |
Commun Chem
June 2020
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Fluorogenic probes are essential tools for real-time visualization of dynamic intracellular processes in living cells, but so far, their design has been largely dependent on trial-and-error methods. Here we propose a quantum chemical calculation-based method for rational prediction of the fluorescence properties of hydroxymethyl rhodamine (HMR)-based fluorogenic probes. Our computational analysis of the intramolecular spirocyclization reaction, which switches the fluorescence properties of HMR derivatives, reveals that consideration of the explicit water molecules is essential for accurate estimation of the free energy difference between the open (fluorescent) and closed (non-fluorescent) forms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2020
Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
To broaden the application of aggregation-induced emission (AIE) luminogens (AIEgens), the design of novel small-molecular dyes that exhibit high fluorescence quantum yield (Φ ) in the solid state is required. Considering that the mechanism of AIE can be rationalized based on steric avoidance of non-radiative decay pathways, a series of bridged stilbenes was designed, and their non-radiative decay pathways were investigated theoretically. Bridged stilbenes with short alkyl chains exhibited a strong fluorescence emission in solution and in the solid state, while bridged stilbenes with long alkyl chains exhibited AIE.
View Article and Find Full Text PDFACS Omega
January 2019
Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan.
The mechanism of l-lactate generation from pyruvate by l-lactate dehydrogenase (LDH) from the rabbit muscle was studied theoretically by the multistructural microiteration (MSM) method combined with the quantum mechanics/molecular mechanics (QM/MM)-ONIOM method, where the MSM method describes the MM environment as a weighted average of multiple different structures that are fully relaxed during geometry optimization or a reaction path calculation for the QM part. The results showed that the substrate binding and product states were stabilized only in the open-loop conformation of LDH and the reaction occurred in the closed-loop conformation. In other words, before and after the chemical reaction, a large-scale structural transition from the open-loop conformation to the closed-loop conformation and vice versa occurred.
View Article and Find Full Text PDFRSC Adv
July 2019
Department of Chemical Science and Engineering, Tokyo Institute of Technology Meguro-ku Tokyo 152-8552 Japan
A synthetic route to embed aggregation-induced-emission-(AIE)-active luminophores in polycarbonates (PCs) in various ratios is reported. The AIE-active monomer is based on the structure of 9,10-bis(piperidyl)anthracene. The obtained PCs display good film-forming properties, similar to those observed in poly(bisphenol A carbonate) (Ba-PC).
View Article and Find Full Text PDFJ Am Chem Soc
May 2019
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering , California Institute of Technology, Pasadena , California 91125 , United States.
In the course of a total synthesis effort directed toward the natural product curcusone C, the Stoltz group discovered an unexpected thermal rearrangement of a divinylcyclopropane to the product of a formal Cope/1,3-sigmatropic shift sequence. Since the involvement of a thermally forbidden 1,3-shift seemed unlikely, theoretical studies involving two approaches, the "trial-and-error" testing of various conceivable mechanisms (Houk group) and an "automatic" approach using the Maeda-Morokuma AFIR method (Morokuma group) were applied to explore the mechanism. Eventually, both approaches converged on a cascade mechanism shown to have some partial literature precedent: Cope rearrangement/1,5-sigmatropic silyl shift/Claisen rearrangement/retro-Claisen rearrangement/1,5-sigmatropic silyl shift, comprising a quintet of five sequential thermally allowed pericyclic rearrangements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!