Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Successful ovulation requires the actions of gonadotropins along with those mediated by growth factors binding to their receptor tyrosine kinases (RTKs). There are several growth factors such as epidermal growth factor family ligands and interleukins that play a role during ovulation initiated by the preovulatory surge of luteinizing hormone (LH). The aim of this project was to analyze growth factor signaling pathways induced by LH in mouse granulosa cells. Immature female mice were treated with equine chorionic gonadotropin (eCG) followed 48 hr later by human chorionic gonadotropin (hCG) to induce follicular growth and ovulation. We performed protein array analysis where we identified higher phosphorylation of insulin-like growth factor 1 receptor (IGF1R), the fibroblast growth factor receptor 2 (FGFR2) and ephrin receptor B1 (EPHB1) in granulosa cells at 4 hr post-hCG compared to 0 hr hCG (p < 0.05). We report both a significant increase in transcript abundance (p < 0.05) and the phosphorylation level (p < 0.05) of the IGF1R in granulosa cells at hCG4h. The mRNA abundance of the Fgfr2 and Ephb1 receptors remained unaltered upon hCG treatment. Nonetheless, transcript abundance of the fibroblast growth factor 2 (Fgf2) ligand was elevated at hCG4h (p < 0.01). Based on these results we conclude that the preovulatory LH surge activates signaling pathways of IGF1R through increase in the expression of the Igf1r gene in granulosa cells of ovulating follicles in mice. The LH surge also appears to activate FGFR2 IIIc and EPHB1 signaling, although further investigation is required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.22966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!