Despite major advances in recent years, immunosuppressive regimens for multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and graft-versus-host disease still have major adverse effects and immunomodulation rather than immune paralysis would be desirable. Statins inhibit the rate-limiting enzyme of the l-mevalonate pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. It was shown that blocking the l-mevalonate pathway reduces inflammation through effects on downstream metabolites of the pathway including farnesylpyrophosphates and geranylgeranylpyrophosphates, which are essential for the attachment of GTPases like RhoA, Rac and Ras to the cell membrane. Therefore, l-mevalonate pathway downstream products play critical roles in the different steps of an immune response including immune cell activation, migration, cytokine production, immune metabolism and survival. This review discusses the relevance of the different metabolites for the immunomodulatory effect of statins and connects preclinical results with data from clinical studies that tested statins for the treatment of different inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904709 | PMC |
http://dx.doi.org/10.1111/imm.12902 | DOI Listing |
Biotechnol Bioeng
December 2024
Department of Microbiology, University of Georgia, Athens, Georgia, USA.
Mevalonate is a biochemical precursor to a wide range of isoprenoids. The mevalonate pathway uses three moles of acetyl-CoA, and therefore native pathways which metabolize acetyl-CoA compete with mevalonate synthesis. Moreover, the final step in mevalonate formation, mediated by hydroxymethylglutaryl-CoA reductase, requires NADPH as a co-substrate.
View Article and Find Full Text PDFACS Sustain Chem Eng
September 2024
BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, U.K.
Stable production of value-added products using a microbial chassis is pivotal for determining the industrial suitability of the engineered biocatalyst. Microbial cells often lose the multicopy expression plasmids during long-term cultivations. Owing to the advantages related to titers, yields, and productivities when using a multicopy expression system compared with genomic integrations, plasmid stability is essential for industrially relevant biobased processes.
View Article and Find Full Text PDFMetab Eng
November 2021
National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China. Electronic address:
Glycolysis is the primary metabolic pathway in all living organisms. Maintaining the balance of glycolysis flux and biosynthetic pathways is the crucial matter involved in the microbial cell factory. Few regulation systems can address the issue of metabolic flux imbalance in glycolysis.
View Article and Find Full Text PDFJ Biotechnol
May 2018
CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China. Electronic address:
Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C.
View Article and Find Full Text PDFImmunology
May 2018
Department of Haematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Centre, Freiburg, Germany.
Despite major advances in recent years, immunosuppressive regimens for multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and graft-versus-host disease still have major adverse effects and immunomodulation rather than immune paralysis would be desirable. Statins inhibit the rate-limiting enzyme of the l-mevalonate pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase. It was shown that blocking the l-mevalonate pathway reduces inflammation through effects on downstream metabolites of the pathway including farnesylpyrophosphates and geranylgeranylpyrophosphates, which are essential for the attachment of GTPases like RhoA, Rac and Ras to the cell membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!