Purpose: The purpose of this study was to characterize the relation between corneal hydration and stiffening effects of the UVA/riboflavin collagen crosslinking treatment and to investigate how artificially swelling the cornea prior to this treatment procedure affects tensile property improvement.
Methods: Porcine corneas were collagen crosslinked in vitro at different hydration levels using a number of hypoosmolar and isoosmolar riboflavin solutions. Thickness of the specimens prior to crosslinking was taken as a proxy for their hydration and was used to divide them into different thickness groups. A Dynamic Mechanical Analysis (DMA) machine was used to perform mechanical tensile tests. The hydration of specimens during the mechanical tests was kept similar to the hydration at which they were crosslinked. The recorded force was used to calculate the maximum tensile stress and tangent modulus as a function of thickness (hydration) prior to collagen crosslinking treatment.
Results: Collagen crosslinking with either a hypoosmolar or isoosmolar solution significantly increased corneal tensile modulus (P < 0.05). Corneas that were swollen prior to crosslinking showed significantly softer tensile properties compared with those that were crosslinked at lower hydration (P < 0.05). Although the degree of tensile property improvement was hydration dependent, the stiffness of samples crosslinked at higher hydration was not significantly different than the stiffness of those crosslinked at lower hydration when the hydration was kept similar in the mechanical experiments.
Conclusions: Swelling porcine corneas to the different extents prior to collagen crosslinking treatment does not significantly change the amount of biomechanical improvement if tensile properties are measured at similar hydration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.17-22814 | DOI Listing |
Cell Biochem Biophys
December 2024
School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan.
Cell-extracellular matrix (ECM) interactions play multiple roles in developmental, physiological, and pathological processes. ECM stiffness substantially affects cellular morphology, migration, and function. In this study, we investigated the effect of ECM comprising gelatin methacryloyl (GelMA) on the activation of rat basophilic leukemia (RBL-2H3) cells, a model mast cell line.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China; Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China. Electronic address:
Intralesional injection of 5-fluorouracil for the clinical treatment of hypertrophic scars (HS) remains challenging due to its short half-life, as well as the absence of evidence-based dosage and frequency injection guidelines. Herein, we developed a matrix metalloproteinases (MMPs)/reactive oxygen species (ROS)-responsive injectable prodrug hydrogel (GFP) that exhibits sustained drug release and fluorescence imaging capability, aiming to facilitate the optimization of injection dosage and frequency in HS treatment. The GFP hydrogel comprises gelatin methacryloyl and pendant methacryloyl-decorated tetrapeptide (PPPK) with 5-fluorouracil acetic acid/rhodamine B at the N-terminus.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China.
The cross-linking process of collagen is one of the more important ways to improve the mineralization ability of collagen. However, the regulatory effect of dynamic cross-linking on biomineralization in vitro remains unclear. Dynamic-cross-linked mineralized collagen under different cross-linking processes, according to the process of cross-linking and mineralization of natural bone, was prepared in this study.
View Article and Find Full Text PDFGels
December 2024
Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany.
Objectives: Glucocorticoid cosecretion is more common in primary aldosteronism (PA) than previously thought. Chronic subtle cortisol excess in patients with mild autonomous cortisol secretion (MACS) negatively affects bone health. This study aimed to evaluate the impact of MACS on bone density and turnover markers in PA patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!