Purpose: We have shown previously that amblyopia involves impaired detection of asynchrony between auditory and visual events. To distinguish whether this impairment represents a defect in temporal integration or nonintegrative multisensory processing (e.g., cross-modal matching), we used the temporal ventriloquism effect in which visual temporal order judgment (TOJ) is normally enhanced by a lagging auditory click.
Methods: Participants with amblyopia (n = 9) and normally sighted controls (n = 9) performed a visual TOJ task. Pairs of clicks accompanied the two lights such that the first click preceded the first light, or second click lagged the second light by 100, 200, or 450 ms. Baseline audiovisual synchrony and visual-only conditions also were tested.
Results: Within both groups, just noticeable differences for the visual TOJ task were significantly reduced compared with baseline in the 100- and 200-ms click lag conditions. Within the amblyopia group, poorer stereo acuity and poorer visual acuity in the amblyopic eye were significantly associated with greater enhancement in visual TOJ performance in the 200-ms click lag condition.
Conclusions: Audiovisual temporal integration is intact in amblyopia, as indicated by perceptual enhancement in the temporal ventriloquism effect. Furthermore, poorer stereo acuity and poorer visual acuity in the amblyopic eye are associated with a widened temporal binding window for the effect. These findings suggest that previously reported abnormalities in audiovisual multisensory processing may result from impaired cross-modal matching rather than a diminished capacity for temporal audiovisual integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.17-22613 | DOI Listing |
Adv Exp Med Biol
January 2024
School of Psychological and Cognitive Sciences, Peking University, Beijing, China.
Intramodal and cross-modal perceptual grouping based on the spatial proximity and temporal closeness between multiple sensory stimuli, as an operational principle has built a coherent and meaningful representation of the multisensory event/object. To implement and investigate the cross-modal perceptual grouping, researchers have employed excellent paradigms of spatial/temporal ventriloquism and cross-modal dynamic capture and have revealed the conditional constraints as well as the functional facilitations among various correspondence of sensory properties, with featured behavioral evidence, computational framework as well as brain oscillation patterns. Typically, synesthetic correspondence as a special type of cross-modal correspondence can shape the efficiency and effect-size of cross-modal interaction.
View Article and Find Full Text PDFEur J Neurosci
April 2024
Department of Cognitive Neuroscience, Universität Bielefeld, Bielefeld, Germany.
Studies on multisensory perception often focus on simplistic conditions in which one single stimulus is presented per modality. Yet, in everyday life, we usually encounter multiple signals per modality. To understand how multiple signals within and across the senses are combined, we extended the classical audio-visual spatial ventriloquism paradigm to combine two visual stimuli with one sound.
View Article and Find Full Text PDFVision Res
February 2024
Department of Psychology, School of Education, Soochow University, Suzhou, Jiangsu 215123, China; Research Center for Psychology and Behavioral Sciences, Soochow University, Suzhou, Jiangsu 215123, China. Electronic address:
The saccadic chronostasis illusion refers to the duration overestimation of the first visual stimulation after saccadic eye movement, which is also known as "stopped clock illusion." The present study investigated whether saccadic chronostasis would be observed in the auditory modality and whether the saccade-induced time dilation in the visual modality would be reduced by a synchronously presented sound. In each trial, a unisensory visual stimulus, unisensory sound, or bimodal audio-visual stimulus with a duration of 200-800 ms (probe stimulus) was presented at the saccade target location and temporally around the offset of the saccade, followed by a unisensory visual or auditory standard stimulus for a fixed 500 ms.
View Article and Find Full Text PDFHear Res
December 2023
Queensland University of Technology (QUT), School of Psychology and Counselling, Kelvin Grove, QLD 4059, Australia; Queensland University of Technology (QUT), Centre for Vision and Eye Research, Kelvin Grove, QLD 4059, Australia.
There is great scientific and public interest in claims that musical training improves general cognitive and perceptual abilities. While this is controversial, recent and rather convincing evidence suggests that musical training refines the temporal integration of auditory and visual stimuli at a general level. We investigated whether musical training also affects integration in the spatial domain, via an auditory localisation experiment that measured ventriloquism (where localisation is biased towards visual stimuli on audiovisual trials) and recalibration (a unimodal localisation aftereffect).
View Article and Find Full Text PDFAtten Percept Psychophys
October 2022
National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.
The timing of brief stationary sounds has been shown to alter different aspects of visual motion, such as speed estimation. These effects of auditory timing have been explained by temporal ventriloquism and auditory dominance over visual information in the temporal domain. Although previous studies provide unprecedented evidence for the multisensory nature of speed estimation, how attention is involved in these audiovisual interactions remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!