Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-LiN film directly bonded onto Li metal foil. The film consists of highly textured large LiN grains (tens of μm) with (001) crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10 S cm, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This LiN coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|LiTiO cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5785765 | PMC |
http://dx.doi.org/10.1021/acscentsci.7b00480 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Engineering Research Center of Energy Storage Material and Chemistry, Universities of Shaanxi Province, Xi'an Jiaotong University, Xi'an, 710049, China.
Direct regeneration of spent lithium-ion batteries offers economic benefits and a reduced CO footprint. Surface prelithiation, particularly through the molten salt method, is critical in enhancing spent cathode repair during high-temperature annealing. However, the sluggish Li transport kinetics, which predominantly relies on thermally driven processes in the traditional molten salt methods, limit the prelithiation efficiency and regeneration of spent cathodes.
View Article and Find Full Text PDFSmall
January 2025
School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
ACS Appl Mater Interfaces
January 2025
Advanced Functional Nanomaterials Research Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India.
The development of quasi-solid-state lithium metal batteries (QSSLMBs) is hindered by inadequate interfacial contact, poor wettability between electrodes and quasi-solid-state electrolytes, and significant volume changes during long-term cycling, leading to safety risks and cataclysmic failures. Here, we report an innovative approach to enhance interfacial properties through the construction of QSSLMBs. A multilayer design integrates a microwave-synthesized LiAlTi(PO) (LATP) ceramic electrolyte, which is surface-coated with a lithiophilic conductive ink comprising VS and disulfonated functionalized graphene nanosheets (VS-DSGNS) using a low-cost nail-polish binder.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Guangdong Key Laboratory for Hydrogen Energy Technologies; School of Materials Science and Hydrogen Energy, Foshan University, 18 Jiangwan First Road, Foshan 528225, P. R. China.
Garnet-type LiGaLaZrO(LGLZO) is believed to be a promising solid electrolyte for solid-state batteries due to its high ionic conductivity, safety, and good stability toward Li. However, one of the most challenges in practical application of LGLZO is the poor contact between Li and LGLZO. Herein, a ZnO layer is prepared on the surface of LGLZO pellet by ultrasonic spraying.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!