Aim: The epithelial layer within the colon represents a physical barrier between the luminal contents and its underlying mucosa. It plays a pivotal role in mucosal homeostasis, and both tolerance and anti-pathogenic immune responses. Identifying signals of inflammation initiation and responses to stimuli from within the epithelial layer is critical to understanding the molecular pathways underlying disease pathology. This study validated a method to isolate and analyze epithelial populations, enabling investigations of epithelial function and response in a variety of disease setting.

Materials And Methods: Epithelial cells were isolated from whole mucosal biopsies harvested from healthy controls and patients with active ulcerative colitis by calcium chelation. The purity of isolated cells was assessed by flow cytometry. The expression profiles of a panel of epithelial functional genes were investigated by reverse transcription-polymerase chain reaction (PCR) in isolated epithelial cells and corresponding mucosal biopsies. The expression profiles of isolated cells and corresponding mucosal biopsies were evaluated and compared between healthy and inflamed colonic tissue.

Results: Flow cytometry identified 97% of cells isolated as intestinal epithelial cells (IECs). Comparisons of gene expression profiles between the mucosal biopsies and isolated IECs demonstrated clear differences in the gene expression signatures. Sixty percent of the examined genes showed contrasting trends of expression between sample types.

Conclusion: The calcium chelation isolation method provided a reliable method for the isolation of a pure population of cells with preservation of epithelial cell-specific gene expression. This demonstrates the importance of sample choice when investigating functions directly affecting the colonic epithelial layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769583PMC
http://dx.doi.org/10.2147/CEG.S145224DOI Listing

Publication Analysis

Top Keywords

gene expression
16
epithelial cells
16
mucosal biopsies
16
calcium chelation
12
epithelial layer
12
expression profiles
12
epithelial
11
intestinal epithelial
8
cells
8
cells isolated
8

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.

Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.

View Article and Find Full Text PDF

SMORE: spatial motifs reveal patterns in cellular architecture of complex tissues.

Genome Biol

January 2025

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, 90095, CA, USA.

Deciphering the link between tissue architecture and function requires methods to identify and interpret patterns in spatial arrangement of cells. We present SMORE, an approach to detect patterns in sequential arrangements of cells and examine their associated gene expression specializations. Applied to retina, brain, and embryonic tissue maps, SMORE identifies novel spatial motifs, including one that offers a new mechanism of action for type 1b bipolar cells.

View Article and Find Full Text PDF

KDM6A facilitates Xist upregulation at the onset of X inactivation.

Biol Sex Differ

January 2025

Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.

Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!