Fiber lasers with flexible spectral manipulation property could provide a flexible tool for scenes where the temporal coherence property accounts, for example, coherent sensing/communication and nonlinear frequency conversion. Due to the good laser performance and relative simplicity of implementation, random fiber lasers (RFLs) based on random distributed feedback and Raman gain have earned more and more attention in the past few years, and a variety of RFLs with substantially different spectral properties have been developed. In this presentation, we demonstrate a high power linearly polarized RFL with flexible spectral manipulation property, in which the central wavelength and the linewidth of the spectrum can be tuned independently through a bandwidth-adjustable tunable optical filter (BA-TOF). The central wavelength of the RFL can be continuously tuned from 1095 to 1115 nm, while the full width at half-maximum (FWHM) linewidth has a maximal tuning range from ~0.6 to more than 2 nm. Moreover, the output power of 1102.5-1112.5 nm reaches ~23 W with polarization extinction ratio (PER) value > 20 dB. To the best of our knowledge, this is the first demonstration of a powerful linearly polarized RFL with both wavelength and linewidth tunability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795014PMC
http://dx.doi.org/10.1038/s41598-018-20664-yDOI Listing

Publication Analysis

Top Keywords

flexible spectral
12
spectral manipulation
12
manipulation property
12
linearly polarized
12
high power
8
power linearly
8
random fiber
8
fiber lasers
8
polarized rfl
8
central wavelength
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!