Fluorocarbon amphiphiles are anthropogenic substances widely used in diverse applications such as food packaging, clothing or cookware. Due to their widespread use and non-biodegradability, these chemicals are now ubiquitous in the natural world with high propensity to bioaccumulate in biological membranes, wherein they may affect microscopic properties. Here, we test the hypothesis that a typical fluorocarbon amphiphile can affect lipid membranes similarly to cholesterol by investigating the effect of 1H,1H,2H,2H-perfluoro-1-decanol (8:2 FTOH) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes. Using solid-state nuclear magnetic resonance spectroscopy, differential scanning calorimetry and confocal microscopy, we present a consistent set of independent experimental evidences supporting this hypothesis, namely that upon incorporation of 8:2 FTOH, (i) a condensing effect on the acyl chains occurs in the fluid phase, (ii) coexistence of two membrane phases is observed below melting, and (iii) the melting temperature of DPPC varies no more than approximately ±1 °C up to a concentration of 40 mol% of 8:2 FTOH. The condensing effect is quantified by means of advanced dipolar recoupling solid-state NMR experiments and is found to be of approximately half the magnitude of the cholesterol effect at the same concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794869 | PMC |
http://dx.doi.org/10.1038/s41598-018-20511-0 | DOI Listing |
Environ Sci Technol
January 2022
Nicholas School of the Environment, Duke University, Box 90328, Durham, North Carolina 27708, United States.
Anti-fog sprays and solutions are used on eyeglasses to minimize the condensation of water vapor, particularly while wearing a mask. Given their water-repellent properties, we sought to characterize per- and polyfluorinated alkyl substance (PFAS) compounds in four anti-fog spray products, five anti-fog cloth products, and two commercial fluorosurfactant formulations suspected to be used in preparing anti-fog products. Fluorotelomer alcohols (FTOHs) and fluorotelomer ethoxylates (FTEOs) were detected in all products and formulations.
View Article and Find Full Text PDFSci Rep
February 2018
Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!