A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering. | LitMetric

Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering.

Sci Rep

Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Centre for Cognitive Ageing and Cognitive Epidemiology and UK Dementia Research Institute Edinburgh Dementia Research Centre, University of Edinburgh, Edinburgh, UK.

Published: February 2018

Perivascular Spaces (PVS) are a feature of Small Vessel Disease (SVD), and are an important part of the brain's circulation and glymphatic drainage system. Quantitative analysis of PVS on Magnetic Resonance Images (MRI) is important for understanding their relationship with neurological diseases. In this work, we propose a segmentation technique based on the 3D Frangi filtering for extraction of PVS from MRI. We used ordered logit models and visual rating scales as alternative ground truth for Frangi filter parameter optimization and evaluation. We optimized and validated our proposed models on two independent cohorts, a dementia sample (N = 20) and patients who previously had mild to moderate stroke (N = 48). Results demonstrate the robustness and generalisability of our segmentation method. Segmentation-based PVS burden estimates correlated well with neuroradiological assessments (Spearman's ρ = 0.74, p < 0.001), supporting the potential of our proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5794857PMC
http://dx.doi.org/10.1038/s41598-018-19781-5DOI Listing

Publication Analysis

Top Keywords

perivascular spaces
8
spaces segmentation
4
segmentation brain
4
brain mri
4
mri optimal
4
optimal filtering
4
filtering perivascular
4
pvs
4
spaces pvs
4
pvs feature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!